設(shè)函數(shù)f(x)=3•log2(4x),
1
4
≤x≤4;
(1)若t=log2x,求t取值范圍;
(2)求f(x)的最值,并給出最值時(shí)對(duì)應(yīng)的x的值.
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由對(duì)數(shù)函數(shù)的單調(diào)性求函數(shù)的值域;
(2)利用換元法求函數(shù)的最值.
解答: 解:(1)∵t=log2x,
1
4
≤x≤4
,
log2
1
4
≤t≤log24
,
即-2≤t≤2;
(2)∵f(x)=3•log2(4x)=3•(2+log2x),
∴令t=log2x,則y=3•(2+t),
∴當(dāng)t=-2,即x=
1
4
時(shí),f(x)min=0,
當(dāng)t=2,即x=4時(shí),f(x)max=12.
點(diǎn)評(píng):本題考查了對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,同時(shí)考查了換元法求函數(shù)的最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線
x=3+4t
y=4-5t
(t為參數(shù))的斜率為( 。
A、
4
5
B、-
4
5
C、
5
4
D、-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x-2y+6>0表示的區(qū)域在直線x-2y+6=0的( 。
A、右上方B、右下方
C、左上方D、左下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知銳角△Sn+an=2n中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且a=3,C=60°,△ABC的面積等于
3
3
2
,求邊長(zhǎng)b和c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=x
1
2
,若f(a+1)<f(10-2a),則a的取值范圍是( 。
A、(0,5)
B、(5,+∞)
C、[-1,3)
D、(3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A,∠B,∠C所對(duì)的邊分別是a,b,c,若b2+c2-
3
bc=a2
,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算
2lg2+lg3
1+lg0.6+lg2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:?x∈[1,2],x2-a≥0,q:?x0∈R,x02+2ax0+2-a=0,若“p∧q”為真命題,則實(shí)數(shù)a的取值范圍是( 。
A、-2≤a≤1
B、a≤-2或1≤a≤2
C、a≥-1
D、a=1或a≤-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+2,x≤-1
x2,-1<x<2
2x,x≥2
,若f(b)=
1
2
,則b=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案