【題目】某公司最近4年對(duì)某種產(chǎn)品投入的宣傳費(fèi)萬(wàn)元與年銷(xiāo)售量之間的關(guān)系如下表所示.
1 | 4 | 9 | 16 | |
168.6 | 236.6 | 304.6 | 372.6 |
(1)根據(jù)以上表格中的數(shù)據(jù)判斷:與哪一個(gè)更適宜作為與的函數(shù)模型?
(2)已知這種產(chǎn)品的年利潤(rùn)萬(wàn)元與的關(guān)系為,則年宣傳費(fèi)為多少時(shí)年利潤(rùn)最大?
【答案】(1)更適宜作為與的函數(shù)模型 (2)時(shí),年利潤(rùn)最大
【解析】
(1)將點(diǎn)代入和,求出這兩個(gè)函數(shù),然后將代入,看哪個(gè)算出的數(shù)據(jù)接近實(shí)際數(shù)據(jù)哪個(gè)就更適宜作為與的函數(shù)模型;
(2)根據(jù)(1)可得,利用函數(shù)單調(diào)性求最大利潤(rùn).
解:(1)①若選,把代入上式,
得,解得,.
當(dāng)時(shí),,與相差較大,該函數(shù)不適宜作為與的函數(shù)模型.
②若選,把代入上式,
得,解得,
當(dāng)時(shí),,
當(dāng)時(shí),.
比較知更適宜作為與的函數(shù)模型;
(2)由(1)知,
令,則,
函數(shù)在上為增函數(shù),在上為減函數(shù),
當(dāng),即時(shí),年利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)過(guò)點(diǎn),其參數(shù)方程為(為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)求已知曲線(xiàn)和曲線(xiàn)交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)?/span>D的函數(shù),若同時(shí)滿(mǎn)足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間,使在上的值域?yàn)?/span>.那么把稱(chēng)為閉函數(shù).下列結(jié)論正確的是( )
A.函數(shù)是閉函數(shù)
B.函數(shù)是閉函數(shù)
C.函數(shù)是閉函數(shù)
D.時(shí),函數(shù)是閉函數(shù)
E.時(shí),函數(shù)是閉函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列,,其前項(xiàng)和滿(mǎn)足,其中.
(1)設(shè),證明:數(shù)列是等差數(shù)列;
(2)設(shè),為數(shù)列的前項(xiàng)和,求證:;
(3)設(shè)(為非零整數(shù),),試確定的值,使得對(duì)任意,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是半徑為2的圓周上的定點(diǎn),P為圓周上的動(dòng)點(diǎn),是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為
A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過(guò)點(diǎn),且的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為的直線(xiàn)與以原點(diǎn)為圓心,半徑為的圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),且,當(dāng)取得最小值時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,,
(Ⅰ)設(shè)分別為的中點(diǎn),求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為: (為參數(shù), ),將曲線(xiàn)經(jīng)過(guò)伸縮變換: 得到曲線(xiàn).
(1)以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,求的極坐標(biāo)方程;
(2)若直線(xiàn)(為參數(shù))與相交于兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)討論f(x)的奇偶性;
(2)求f(x)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com