點A(2,3)在矩陣M=
1
3
1
3
1
3
1
3
對應(yīng)變換作用下得到點的坐標為
 
考點:矩陣變換的性質(zhì)
專題:矩陣和變換
分析:根據(jù)二階矩陣與平面列向量的乘法,求出點A(2,3)在矩陣M=
1
3
1
3
1
3
1
3
對應(yīng)變換作用下得到點的坐標是多少即可.
解答: 解:設(shè)點A(2,3)在矩陣M=
1
3
1
3
1
3
1
3
對應(yīng)變換作用下得到點的坐標為M(x,y)
1
3
1
3
1
3
1
3
 
2 
  
3 
=
x 
  
  
y 

所以
1
3
×2+
1
3
×3=x
1
3
×2+
1
3
×3=y

x=
5
3
y=
5
3

故答案為:(
5
3
5
3
)
點評:本題主要考查了二階矩陣與列向量乘法的定義以及應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD,底面ABCD為直角梯形,BC∥AD,BC⊥CD,BC=CD=
1
2
AD.
(Ⅰ)若E為PD中點,證明:CE∥平面APB;
(Ⅱ)若PA=PB,PC=PD,證明:平面APB⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線C的左右焦點分別為F1、F2,且F2恰為拋物線y2=4x的焦點.設(shè)雙曲線C與該拋物線的一個交點為A,若△AF1F2是以AF1的底邊的等腰三角形,則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在邊長為2的正六邊形ABCDEF中,動圓Q的半徑為1,圓心在線段CD(含端點)上運動,P是圓Q上及內(nèi)部的動點,設(shè)向量
AP
=m
AB
+n
AF
(m、n為實數(shù)),則m+n的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>1,設(shè)函數(shù)f(x)=ax+x-4的零點為m,g(x)=logax+x-4的零點為n,則
1
m
+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二面角α-l-β的大小為60°,A∈α,B∈β,AC⊥l于C,BD⊥l于D,AC=BD=4,CD=3,則AD與BC所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(ax+b)=2m-f(-ax+c)的對稱中心為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A是曲線C1
x2
9
+
y2
4
=1與C2
x2
4
-y2=1的一個交點,且A到C1的兩焦點的距離之和為m,到C2兩焦點距離之差的絕對值為n,則lg(m+n)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2x
-cosx,若
π
3
<a<b<
6
,則(  )
A、f(a)>f(b)
B、f(a)<f(b)
C、f(a)=f(b)
D、f(a)f(b)>0

查看答案和解析>>

同步練習冊答案