【題目】已知f(x)= ,g(x)=|x﹣2|,則下列結(jié)論正確的是( )
A.h(x)=f(x)+g(x)是偶函數(shù)
B.h(x)=f(x)?g(x)是奇函數(shù)
C.h(x)= 是偶函數(shù)
D.h(x)= 是奇函數(shù)
【答案】D
【解析】解:f(x)= ,g(x)=|x﹣2|, A.h(x)=f(x)+g(x)= +|x﹣2|= +2﹣x,x∈[﹣2,2].
h(﹣x)= +2+x,不滿足函數(shù)的奇偶性的定義,是非奇非偶函數(shù).
B.h(x)=f(x)g(x)= |x﹣2|= (2﹣x),x∈[﹣2,2].
h(﹣x)= (2+x),不滿足奇偶性的定義.
C.h(x)= = ,x∈[﹣2,2)不滿足函數(shù)的奇偶性定義.
D.h(x)= = ,x∈[﹣2,0)∪(0,2],函數(shù)是奇函數(shù).
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的奇偶性的相關(guān)知識,掌握偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】偶函數(shù)y=f(x)在區(qū)間(﹣∞,﹣1]上是增函數(shù),則下列不等式成立的是( )
A.f(﹣1)>f( )
B.f( )>f(﹣ )??
C.f(4)>f(3)
D.f(﹣ )>f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直公路上有A,B兩地,甲騎自行車從A地到B地,乙騎著摩托車從B地到A地,到達(dá)A地后立即按原路返回,如圖是甲乙兩人離A地的距離與行駛時間之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
直接寫出,與x之間的函數(shù)關(guān)系式不必寫過程,求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;
若兩人之間的距離不超過5km時,能夠用無線對講機(jī)保持聯(lián)系,求在乙返回過程中有多少分鐘甲乙兩人能夠用無線對講機(jī)保持聯(lián)系;
若甲乙兩人離A地的距離之積為,求出函數(shù)的表達(dá)式,并求出它的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+aln(x+1). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)F(x)=f(x)+ln 有兩個極值點(diǎn)x1 , x2且x1<x2 , 求證F(x2)> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人進(jìn)行選擇題解題比賽,已知每個選擇題選擇正確得分,否則得分.其測試結(jié)果如下:甲解題正確的個數(shù)小于乙解題正確的個數(shù),乙解題正確的個數(shù)小于丙解題正確的個數(shù),丙解題正確的個數(shù)小于丁解題正確的個數(shù);且丁解題正確的個數(shù)的倍小于甲解題正確的個數(shù)的倍,則這四人測試總得分?jǐn)?shù)最少為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)滿足,定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求函數(shù)的解析式;
(2)若函數(shù)在上有零點(diǎn),求的取值范圍;
(3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年6月份上合峰會在青島召開,面向高校招募志愿者,中國海洋大學(xué)海洋環(huán)境學(xué)院的8名同學(xué)符合招募條件并審核通過,其中大一、大二、大三、大四每個年級各2名.若將這8名同學(xué)分成甲乙兩個小組,每組4名同學(xué),其中大一的兩名同學(xué)必須分到同一組,則分到乙組的4名同學(xué)中恰有2名同學(xué)是來自于同一年級的分組方式共有__________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x+my+1=0和l2:(m-3)x-2y+(13-7m)=0.
(1)若l1⊥l2,求實(shí)數(shù)m的值;
(2)若l1∥l2,求l1與l2之間的距離d.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com