【題目】已知曲線C的極坐標方程為ρ=4cosθ,以極點為原點,極軸為x軸正半軸建立平面直角坐標系,設(shè)直線l的參數(shù)方程為(t為參數(shù)).
(1)求曲線C的直角坐標方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P、Q兩點,以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.

【答案】解:(1)對于C:由ρ=4cosθ,得ρ2=4ρcosθ,進而x2+y2=4x;
對于l:由(t為參數(shù)),
,即
(2)由(1)可知C為圓,且圓心為(2,0),半徑為2,
則弦心距
弦長,
因此以PQ為邊的圓C的內(nèi)接矩形面積S=2d
【解析】(1)利用公式x=ρcosθ,y=ρsinθ即可把曲線C的極坐標方程化為普通方程;消去參數(shù)t即可得到直線l的方程;
(2)利用弦長|PQ|=2和圓的內(nèi)接矩形,得對角線是圓的直徑即可求出圓的內(nèi)接矩形的面積.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某高中為了解高中學生的性別和喜歡打籃球是否有關(guān),對50名高中學生進行了問卷調(diào)查,得到如下列聯(lián)表:

已知在這50人中隨機抽取1人,抽到喜歡打籃球的學生的概率為

Ⅰ)請將上述列聯(lián)表補充完整;

Ⅱ)判斷是否有99.5%的把握認為喜歡打籃球與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知極坐標系的極點在直角坐標系的原點處,極軸與x軸的正半軸重合.直線l的參數(shù)方程為:(t為參數(shù)),曲線C的極坐標方程為:ρ=4cosθ.
(Ⅰ)寫出C的直角坐標方程,并指出C是什么曲線;
(Ⅱ)設(shè)直線l與曲線C相交于P、Q兩點,求|PQ|值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對任意,都有.

(1)若函數(shù)的頂點坐標為,求的解析式;

(2)函數(shù)的最小值記為,求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(Ⅰ)求證:平面ABC1⊥平面A1C1CA;
(Ⅱ)設(shè)D是A1C1的中點,判斷并證明在線段BB1上是否存在點E,使DE∥平面ABC1;若存在,求三棱錐E﹣ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}(n=1,2,3,4,5)滿足a1=a5=0,且當2≤k≤5時,(ak﹣ak﹣12=1,令S= , 則S不可能的值是( 。
A.4
B.0
C.1
D.-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}前n項和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(Ⅰ)求證數(shù)列{an}是首項為1的等比數(shù)列;
(Ⅱ)當a2=2時,是否存在等差數(shù)列{bn},使得a1bn+a2bn﹣1+a3bn﹣2+…+anb1=2n+1﹣n﹣2對一切n∈N*都成立?若存在,求出bn;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三內(nèi)角分別為,向量, ,記函數(shù),

(1)若,求的面積;

(2)若關(guān)于的方程有兩個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有5名男生、2名女生站成一排照相,

(1)兩女生要在兩端,有多少種不同的站法?

(2)兩名女生不相鄰,有多少種不同的站法?

(3)女生甲不在左端,女生乙不在右端,有多少種不同的站法?

查看答案和解析>>

同步練習冊答案