【題目】如圖是一個以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:
(Ⅰ)該幾何體的體積;
(Ⅱ)截面ABC的面積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),前項和為,且.
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.
非一線 | 一線 | 總計 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計 | 58 | 42 | 100 |
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
由K2= 算得,K2= ≈9.616參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別無關(guān)”
C.有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”
D.有99%以上的把握認(rèn)為“生育意愿與城市級別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標(biāo)準(zhǔn)是每車每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按1小時計算).有甲、乙兩人獨立來該租車點騎游(各組一車一次).設(shè)甲、乙不超過兩小時還車的概率分別為 , ;兩小時以上且不超過三小時還車的概率分別為 , ;兩人租車時間都不會超過四小時.
(1)求甲、乙兩人所付租車費用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費用之和為隨機變量 ,求 的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,F(xiàn)1、F2分別是橢圓的左、右焦點,M為橢圓上除長軸端點外的任意一點,且△MF1F2的周長為4+2 .
(1)求橢圓C的方程;
(2)過點D(0,﹣2)作直線l與橢圓C交于A、B兩點,點N滿足 (O為原點),求四邊形OANB面積的最大值,并求此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線C的參數(shù)方程為為參數(shù)),曲線P在以該直角坐標(biāo)系的原點O的為極點,x軸的正半軸為極軸的極坐標(biāo)系下的方程為ρ2﹣4ρcosθ+3=0.
(1)求直線C的普通方程和曲線P的直角坐標(biāo)方程;
(2)設(shè)直線C和曲線P的交點為A、B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù) 的圖象,只需把函數(shù) 的圖象上所有的點( )
A.向右平行移動 個單位長度
B.向左平行移動 個單位長度
C.向左平行移動 個單位長度
D.向右平行移動 個單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線中心在原點且一個焦點為 ,直線 與其相交于 , 兩點, 中點的橫坐標(biāo)為 ,則此雙曲線的方程是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com