【題目】(2015全國統(tǒng)考II)設(shè)函數(shù)f(x)=ln(1+|x|)-,則使得f(x)f(2x-1)成立的x的取值范圍是()
A.(,1)
B.(-,)(1,+)
C.(-,)
D.(-,-)(,+)
【答案】A
【解析】由f(x)=ln(1+|x|)-可知f(x)是偶函數(shù),且在【0,+)是增函數(shù),所以f(x)f(2x-1)f(|x|)f(|2x-1|)|x||2x-1|x2(2x-1)2x2(2x-1)2x1,故選 A.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)奇偶性的性質(zhì)和奇偶性與單調(diào)性的綜合的相關(guān)知識可以得到問題的答案,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇;奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中, ,點P為線段A1C上的動點(包含線段端點),則下列結(jié)論正確的 . ①當(dāng) 時,D1P∥平面BDC1;
②當(dāng) 時,A1C⊥平面D1AP;
③當(dāng)∠APD1的最大值為90°;
④AP+PD1的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)當(dāng)a=0時,討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=﹣1時,若f(x)>0對任意x∈(0,π)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的左右焦點與其短軸的一個端點是正三角形的三個頂點,點D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點,與x軸、y軸分別相交于點N和M,且PM=MN,點Q是點P關(guān)于x軸的對稱點,QM的延長線交橢圓于點B,過點A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的左右焦點與其短軸的一個端點是正三角形的三個頂點,點D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點,與x軸、y軸分別相交于點N和M,且PM=MN,點Q是點P關(guān)于x軸的對稱點,QM的延長線交橢圓于點B,過點A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“若,則關(guān)于x的不等式的解集為空集”,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個數(shù)是( 。
A.0B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于非空實數(shù)集A,定義對任意.設(shè)非空實數(shù)集.現(xiàn)給出以下命題:(1)對于任意給定符合題設(shè)條件的集合C,D,必有;(2)對于任意給定符合題設(shè)條件的集合C,D,必有;(3)對于任意給定符合題設(shè)條件的集合C,D,必有;(4)對于任意給定符合題設(shè)條件的集合C,D,必存在常數(shù)a,使得對任意的,恒有.以上命題正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查甲、乙兩個網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計上午8:00—10:00間各自的點擊量,得如下所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖:
(1)甲、乙兩個網(wǎng)站點擊量的極差分別是多少?
(2)甲網(wǎng)站點擊量在[10,60]間的頻率是多少?
(3)甲、乙兩個網(wǎng)站哪個更受歡迎?并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)如圖1,在直角梯形ABCD中,AD∥BC,BAD=,AB=BC=1,
AD=2, E是AD的中點,0是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖2.
(1)證明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE, 四棱錐A1-BCDE的體積為36,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com