【題目】為了解學生寒假閱讀名著的情況,一名教師對某班級的所有學生進行了調查,調查結果如下表:

本數(shù)
人數(shù)
性別

0

1

2

3

4

5

男生

0

1

4

3

2

2

女生

0

0

1

3

3

1

(I)從這班學生中任選一名男生,一名女生,求這兩名學生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學生中任選4人,設選到的男學生人數(shù)為 X,求隨機變量 X的分布列和數(shù)學期望;
(III)試判斷男學生閱讀名著本數(shù)的方差 與女學生閱讀名著本數(shù)的方差 的大。ㄖ恍鑼懗鼋Y論).

【答案】解:(I)全班有12個男生,8個女生,
所以男、女各選1人的方法數(shù)m=12×8=96
而這兩名學生閱讀名著本數(shù)之和為4的方法數(shù)n=1×3+4×1=7,
所以這兩名學生閱讀名著本數(shù)之和為4的概率為p=
(II)由已知隨機變量 X的可能的取值有0,1,2,3,4,
,
,
,

,
∴X的分布列為:

X

0

1

2

3

4

P

∴X的數(shù)學期望為
(III)
【解析】(I)全班有12個男生,8個女生,由此求出男、女各選1人的方法數(shù),再求出這兩名學生閱讀名著本數(shù)之和為4的方法數(shù),由此能求出這兩名學生閱讀名著本數(shù)之和為4的概率.(II)由已知隨機變量 X的可能的取值有0,1,2,3,4,分別求出相應的概率,由此能求出X的分布列和數(shù)學期望.(III)利用調查表能判斷男學生閱讀名著本數(shù)的方差 與女學生閱讀名著本數(shù)的方差 的大。
【考點精析】本題主要考查了極差、方差與標準差和離散型隨機變量及其分布列的相關知識點,需要掌握標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差;在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,CA=CB=2,M,N是斜邊AB上的兩個動點,且MN= ,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=sin( x﹣ )﹣2cos2 x+1.
(1)求f(x)的最小正周期;
(2)若函數(shù)y=f(x)與y=g(x)的圖象關于直線x=1對稱,求當x∈[0, ]時,y=g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在點處的切線.

(1)求證:

(2)設,其中.若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點,A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在點M(1,f(1))處的切線方程為9x+3y-10=0,求

(1)實數(shù)a,b的值;

(2)函數(shù)f(x)的單調區(qū)間以及在區(qū)間[0,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知x、y滿足約束條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為7,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.

查看答案和解析>>

同步練習冊答案