有一位同學(xué)家開了一個(gè)小賣部,他為了研究氣溫對(duì)熱飲銷售的影響,經(jīng)過統(tǒng)計(jì)得到了一天所賣的熱飲杯數(shù)(y)與當(dāng)天氣溫(x℃)之間的線性關(guān)系,其回歸方程為
y
=-2.35x+147.77.如果某天氣溫為2℃時(shí),則該小賣部大約能賣出熱飲的杯數(shù)是( 。
A、140B、143
C、152D、156
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)回歸方程為
y
=-2.35x+147.77,要求我們預(yù)報(bào)當(dāng)某天氣溫-2℃時(shí),該小賣部大約能賣出熱飲的杯數(shù),只要代入x的值,做出y即可.
解答: 解:∵一個(gè)熱飲杯數(shù)與當(dāng)天氣溫之間的線性關(guān)系,其回歸方程
y
=-2.35x+147.77.
∴某天氣溫為2℃時(shí),即x=2,
則該小賣部大約能賣出熱飲的杯數(shù)y=-2.35×2+147.77≈143
故選:B.
點(diǎn)評(píng):本題考查線性回歸方程的應(yīng)用,即根據(jù)所給的或是做出的線性回歸方程,預(yù)報(bào)y的值,這是一些解答題目中經(jīng)常出現(xiàn)的一個(gè)問題,是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)對(duì)函數(shù)f(x)=xcosx進(jìn)行研究后,得出以下五個(gè)結(jié)論:
①函數(shù)y=f(x)的圖象是中心對(duì)稱圖形;
②對(duì)任意實(shí)數(shù)x,f(x)>0均成立;
③函數(shù)的圖象與x軸有無窮多個(gè)公共點(diǎn),且任意相鄰兩點(diǎn)的距離相等;
④函數(shù)y=f(x)的圖象與直線y=x有無窮多個(gè)公共點(diǎn),且任意相鄰兩點(diǎn)的距離相等;
⑤當(dāng)常數(shù)k滿足|k|>1時(shí),函數(shù)y=f(x)的圖象與直線y=kx有且僅有一個(gè)公共點(diǎn).
其中所有正確結(jié)論的個(gè)數(shù)有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連續(xù)拋擲2顆骰子,則出現(xiàn)朝上的點(diǎn)數(shù)之和等于6的概率為( 。
A、
5
36
B、
5
66
C、
1
11
D、
5
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,4},B={x|x是8的約數(shù)},則A與B的關(guān)系是( 。
A、A=BB、A?B
C、A?BD、A∪B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCDEF是正六邊形,直線EF的方程是y=x+4,則向量
m
=
AB
+
BC
+
CD
的一個(gè)方向向量是( 。
A、(1,-1)
B、(-1,1)
C、(1,1)
D、(1,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+2)=3f(x),當(dāng)x∈[0,2]時(shí),f(x)=4x2-12x,則當(dāng)x∈[-4,-2]時(shí),f(x)的最小值是( 。
A、-3B、9C、-9D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在R上的以2為周期的奇函數(shù),且x∈[0,1]時(shí)f(x)=x2,則f(2013.9)=( 。
A、-3.61B、-0.01
C、-0.81D、3.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
a
,
b
,滿足|
a
+
b
|=|
a
-
b
|,則( 。
A、
a
=
b
B、
a
=-
b
C、
a
b
D、
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
4
+1 (x≤1)
lnx (x>1)
,當(dāng)f(x)=ax時(shí)有兩個(gè)實(shí)數(shù)根,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案