【題目】在直角坐標系 中,曲線 的參數(shù)方程為 (為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線 的極坐標方程為 .
(1)求直線和曲線的普通方程;
(2)已知點,且直線和曲線交于兩點,求 的值
【答案】(1),;(2)
【解析】
(1)消去曲線C中的參數(shù)可得C的普通方程,利用極坐標與直角坐標的互化公式可得直線的普通方程.
(2)由直線的普通方程可知直線過P,寫出直線的參數(shù)方程,與曲線C的普通方程聯(lián)立,利用直線參數(shù)的幾何意義及韋達定理可得結(jié)果.
(1)因為曲線 的參數(shù)方程為 (為參數(shù)),所以消去參數(shù),
得曲線的普通方程為
因為直線 的極坐標方程為 ,即 ,
所以直線的普通方程為
(2)因為直線經(jīng)過點 ,所以得到直線的參數(shù)方程為 (為參數(shù))
設(shè) ,
把直線的參數(shù)方程代入曲線的普通方程,得,
則,
故
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近來天氣變化無常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機對人院的名幼兒進行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,
(1)請將下面的列聯(lián)表補充完整;
患傷風(fēng)感冒疾病 | 不患傷風(fēng)感冒疾病 | 合計 | |
男 | 25 | ||
女 | 20 | ||
合計 | 100 |
(2)能否在犯錯誤的概率不超過的情況下認為患傷風(fēng)感冒疾病與性別有關(guān)?說明你的理由;
(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,有名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進行其他方面的排查,記選出患黃痘病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙.從外觀上看,是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱;六根等長的正四棱柱分成三組,經(jīng)90°榫卯起來.如圖所示,正四棱柱的高為8,底面正方形的邊長為1,將這個魯班鎖放進一個球形容器內(nèi),則該球形容器半徑的最小值為(容器壁的厚度忽略不計)( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定下列四個命題
若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
若一條直線和兩個互相垂直的平面中的一個平面垂直,那么這條直線一定平行于另一個平面;
若一條直線和兩個平行平面中的一個平面垂直,那么這條直線也和一個平面垂直;
若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直,
其中,真命題的個數(shù)是
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在取得極小值,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);.
(1)判斷在上的單調(diào)性,并說明理由;
(2)求的極值;
(3)當時,,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù),).以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)已知曲線與曲線交于,兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司在當?shù)?/span>、兩家超市各有一個銷售點,每日從同一家食品廠一次性購進一種食品,每件200元,統(tǒng)一零售價每件300元,兩家超市之間調(diào)配食品不計費用,若進貨不足食品廠以每件250元補貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購進食品數(shù)量,為此搜集并整理了、兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):
銷售件數(shù) | 8 | 9 | 10 | 11 |
頻數(shù) | 20 | 40 | 20 | 20 |
以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),表示銷售公司每日共需購進食品的件數(shù).
(1)求的分布列;
(2)以銷售食品利潤的期望為決策依據(jù),在與之中選其一,應(yīng)選哪個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com