【題目】已知橢圓Cab>0)的兩個焦點分別為F1F2,離心率為,過F1的直線l與橢C交于M,N兩點,且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點,且OAOB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.

【答案】(1); (2)見解析.

【解析】

(1)根據(jù)三角形周長為8,結(jié)合橢圓的定義可知,利用,即可求得的值,求得橢圓方程;(2)分類討論當直線斜率斜存在時,聯(lián)立,得到關(guān)于的一元二次方程,利用韋達定理及向量數(shù)量積的坐標運算,求得的關(guān)系,利用點到直線的距離公式即可求得點到直線的距離是否為定值.

(1)由題意知,4a=8,則a=2,

由橢圓離心率,則b2=3.

∴橢圓C的方程;

(2)由題意,當直線AB的斜率不存在,此時可設(shè)A(x0,x0),B(x0,-x0).

又A,B兩點在橢圓C上,

,

∴點O到直線AB的距離,

當直線AB的斜率存在時,設(shè)直線AB的方程為y=kx+b.設(shè)A(x1,y1),B(x2,y2

聯(lián)立方程,消去y得(3+4k2)x2+8kbx+4b2-12=0.

由已知△>0,x1+x2=,x1x2=,

由OA⊥OB,則x1x2+y1y2=0,即x1x2+(kx1+b)(kx2+b)=0,

整理得:(k2+1)x1x2+kb(x1+x2)+b2=0,

∴7b2=12(k2+1),滿足△>0.

∴點O到直線AB的距離為定值.

綜上可知:點O到直線AB的距離d=為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,不等式組 (r為常數(shù))表示的平面區(qū)域的面積為π,若x,y滿足上述約束條件,則z= 的最小值為(
A.﹣1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)A,B分別為雙曲線 (a>0,b>0)的左、右頂點,雙曲線的實軸長為4,焦點到漸近線的距離為.

(1)求雙曲線的方程;

(2)已知直線yx-2與雙曲線的右支交于M,N兩點,且在雙曲線的右支上存在點D,使,求t的值及點D的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 右頂點為A,上頂點為B,離心率為e.橢圓上一點C滿足:C在x軸上方,且CF1⊥x軸.

(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點D若 ≤e≤ ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 , ,則下列結(jié)論中正確的是(
A.函數(shù)y=f(x)?g(x)的周期為2
B.函數(shù)y=f(x)?g(x)的最大值為1
C.將f(x)的圖象向左平移 個單位后得到g(x)的圖象
D.將f(x)的圖象向右平移 個單位后得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列滿足,,

求數(shù)列的通項公式;

設(shè),求的前n項和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,

時,求函數(shù)圖象過的定點;

,,且有最小值2時,求a的值;

,時,有恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點,,

.

(1)求證:;

(2)若平面與平面所成的銳二面角的大小為,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直角坐標平面內(nèi)的兩點P,Q滿足條件:①P,Q都在函數(shù)y=f(x)的圖象上;②P,Q關(guān)于原點對稱,則稱點對(P,Q)是函數(shù)y=f(x)的一對“友好點對”(點對(P,Q)與(Q,P)看作同一對“友好點對”).已知函數(shù)f(x)= ,則此函數(shù)的“友好點對”有(
A.3對
B.2對
C.1對
D.0對

查看答案和解析>>

同步練習冊答案