10.已知點M(0,-1),N(2,3).如果直線MN垂直于直線ax+2y-3=0,那么a等于1.

分析 利用相互垂直的直線的斜率之間關(guān)系即可得出.

解答 解:∵點M(0,-1),N(2,3),
∴kMN=$\frac{3+1}{2-0}$=2,
∵直線MN垂直于直線ax+2y-3=0,
∴2×$(-\frac{a}{2})$=-1,解得a=1.
故答案為1.

點評 本題考查了相互垂直的直線的斜率之間關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知A(-3,0),B(3,0),動點M滿足$\overrightarrow{MA}$•$\overrightarrow{MB}$=1,記動點M的軌跡為C.
(1)求C的方程;
(2)若直線l:y=kx+4與C交于P,Q兩點,且|PQ|=6,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點M在雙曲線C1的一條漸近線上,且OM⊥MF2,若△OMF2的面積為16,且雙曲線C1與雙曲線C2:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1的離心率相同,則雙曲線C1的實軸長為( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將邊長為2的正方形ABCD沿對角線AC折起,使得BD=2,則三棱錐D-ABC的頂點D到底面ABC的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓的短軸長是焦距的2倍,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l過坐標(biāo)原點O,圓C的方程為x2+y2-6y+4=0.
(Ⅰ)當(dāng)直線l的斜率為$\sqrt{2}$時,求l與圓C相交所得的弦長;
(Ⅱ)設(shè)直線l與圓C交于兩點A,B,且A為OB的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,E為正四棱錐P-ABCD側(cè)棱PD上異于P,D的一點,給出下列結(jié)論:
①側(cè)面PBC可以是正三角形;
②側(cè)面PBC可以是直角三角形;
③側(cè)面PAB上存在直線與CE平行;
④側(cè)面PAB上存在直線與CE垂直.
其中,所有正確結(jié)論的序號是( 。
A.①②③B.①③④C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)復(fù)數(shù)z=i(1+i)(i為虛數(shù)單位),則復(fù)數(shù)z的實部為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\vec a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,$|{\overrightarrow a}|=2$,|$\overrightarrow$|=3,記$\vec m=3\vec a-2\vec b$,$\vec n=2\vec a+k\vec b$
(I) 若$\vec m⊥\vec n$,求實數(shù)k的值;
(II) 當(dāng)$k=-\frac{4}{3}$時,求向量$\vec m$與$\vec n$的夾角θ.

查看答案和解析>>

同步練習(xí)冊答案