【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬(wàn)件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬(wàn)元滿足 (其中,為正常數(shù)).已知生產(chǎn)該批產(chǎn)品還需投入成本萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為元/件

(1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷費(fèi)用萬(wàn)元的函數(shù);(注:利潤(rùn)=銷售收入-促銷費(fèi)-投入成本)

(2)當(dāng)促銷費(fèi)用投入多少萬(wàn)元時(shí),該公司的利潤(rùn)最大?

【答案】(1) .

(2)當(dāng)時(shí),促銷費(fèi)用投入2萬(wàn)元,廠家的利潤(rùn)最大;當(dāng)時(shí)促銷費(fèi)用投入萬(wàn)元,廠家的利潤(rùn)最大.

【解析】

試題分析:(1)根據(jù)利潤(rùn)等于銷售額減去促銷費(fèi)用及投入成本,列出函數(shù)關(guān)系式:再將代入化簡(jiǎn)得(2)利用基本不等式求最值,要注意其等號(hào)取法,本題需結(jié)合定義域進(jìn)行討論:當(dāng)且僅當(dāng)時(shí),取等號(hào).當(dāng)時(shí),促銷費(fèi)用投入2萬(wàn)元時(shí),該公司的利潤(rùn)最大;當(dāng)時(shí),函數(shù)上單調(diào)遞增,促銷費(fèi)用投入萬(wàn)元時(shí),該公司的利潤(rùn)最大

試題解析:(1)由題意得:3

代入化簡(jiǎn)得

5

(2)

當(dāng)且僅當(dāng)時(shí),取等號(hào) 8

當(dāng)時(shí),促銷費(fèi)用投入2萬(wàn)元時(shí),該公司的利潤(rùn)最大 9

當(dāng)時(shí),,此時(shí)函數(shù)上單調(diào)遞增

所以當(dāng)時(shí),函數(shù)上單調(diào)遞增 11

所以時(shí),函數(shù)有最大值,即促銷費(fèi)用投入萬(wàn)元時(shí),該公司的利潤(rùn)最大 12

綜上,當(dāng)時(shí),促銷費(fèi)用投入2萬(wàn)元時(shí),該公司的利潤(rùn)最大;

當(dāng)時(shí),促銷費(fèi)用投入萬(wàn)元時(shí),該公司的利潤(rùn)最大 14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)的單調(diào)區(qū)間;

(2)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍;

(3)證明:對(duì)一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有個(gè)大小相同的黑球和白球.已知從袋中任意摸出個(gè)球,至少得到個(gè)白球的概率是.

(1)求白球的個(gè)數(shù);

(2)從袋中任意摸出個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

平均每天鍛煉
的時(shí)間(分鐘)

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828


(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)當(dāng)x∈(0,1)時(shí),求f(x)的單調(diào)性;
(2)若h(x)=(x2﹣x)f(x),且方程h(x)=m有兩個(gè)不相等的實(shí)數(shù)根x1 , x2 . 求證:x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)設(shè)函數(shù)f(x)=|x﹣ |+|x﹣a|,x∈R,若關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a的最大值;
(2)已知正數(shù)x,y,z滿足x+2y+3z=1,求 + + 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(其中是自然對(duì)數(shù)的底數(shù)),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記

①當(dāng)時(shí),試判斷的導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù);

②求證:時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù)滿足:對(duì)任意都有.

1)求證:函數(shù)是奇函數(shù);

2)如果當(dāng)時(shí),有,試判斷上的單調(diào)性,并用定義證明你的判斷;

(3)在(2)的條件下,若對(duì)滿足不等式的任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司訂購(gòu)了一批樹苗,為了檢測(cè)這批樹苗是否合格,從中隨機(jī)抽測(cè) 株樹苗的高度,經(jīng)數(shù)據(jù)處理得到如圖的頻率分布直方圖,起中最高的 株樹苗高度的莖葉圖如圖所示,以這 株樹苗的高度的頻率估計(jì)整批樹苗高度的概率.

(1)求這批樹苗的高度高于 米的概率,并求圖19-1中, , 的值;

(2)若從這批樹苗中隨機(jī)選取 株,記 為高度在 的樹苗數(shù)列,求 的分布列和數(shù)學(xué)期望.

(3)若變量 滿足,則稱變量 滿足近似于正態(tài)分布 的概率分布.如果這批樹苗的高度滿足近似于正態(tài)分布 的概率分布,則認(rèn)為這批樹苗是合格的,將順利獲得簽收;否則,公司將拒絕簽收.試問(wèn),該批樹苗能否被簽收?

查看答案和解析>>

同步練習(xí)冊(cè)答案