已知數(shù)列{an}滿足:a1=2,an+1=an2-nan+1,令bn=
1
a n•a n+1
,則數(shù)列{bn}的前n項和Sn=
考點:數(shù)列的求和,數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:根據(jù)數(shù)列的遞推關系,求出數(shù)列的前幾項,根據(jù)歸納推理得到數(shù)列{an}的通項公式,利用裂項法即可求出數(shù)列的前n項和.
解答: 解:當n=1時,a2=a12-a1+1=4-2+1=3,
當n=2時,a3=a22-2a2+1=9-6+1=4,
當n=3時,a4=a32-3a3+1=16-12+1=5,
當n=4時,a5=a42-4a4+1=25-20+1=6,
則由歸納法可知an=n+1,
則bn=
1
a n•a n+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

則數(shù)列{bn}的前n項和Sn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2
,
故答案為:
1
2
-
1
n+2
點評:本題主要考查數(shù)列的求和計算,根據(jù)條件歸納出數(shù)列數(shù)列{an}的通項公式,利用裂項法是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
3
x3-ax2-4
(1)當a=1時,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(3,+∞)是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x(x-4) ,x≥0
x(x+4), x<0

(1)求函數(shù)f(x)的零點;
(2)解不等式f(x)<-3;
(3)求f(a+1)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A,B為一個鈍角三角形的兩個銳角,下列關系式中正確的是
 
.(寫出所有符合要求的題號)
①sinA+cosA=0.99  
②(sinA-cosA)(sinA+cosA)=
2
  
③tanAtanB<1 
④sinA+sinB<
2
  
⑤cosA+cosB>1 
1
2
tan(A+B)<tan
A+B
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設T是邊長為2的正△P1P2P3的邊及其內(nèi)部的點構成的集合,點P0是三角形的中心,若集合S={P∈T||PP0|≤|PPi|,i=1,2,3},若M∈S,則(
P0P1
+
P0P2
)•
P3M
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于菱形ABCD,給出下列各式:
AB
=
BC

②|
AB
|=|
BC
|
③|
AB
-
CD
|=|
AD
+
BC
|
④|
AD
|2+|
BD
|2=4|
AB
|2
其中正確的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,直線?1的方程是ρsin(θ+
π
4
)=
2
2
,以極點為原點,以極軸為x軸的正半軸建立直角坐標系,在直角坐標系中,直線?2的方程是3x+ky=1.如果直線?1與?2垂直,則常數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是等差數(shù)列,Sn為{an}的前n項和,S7=7,S15=75,已知Tn為數(shù)列{
Sn
n
}的前n項和,則Tn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由y=|x|與圓x2+y2=4所圍成的圖形面積為
 

查看答案和解析>>

同步練習冊答案