【題目】在平面直角坐標系中,已知定點,點在軸上運動,點在軸上運動,點為坐標平面內的動點,且滿足,.
(1)求動點的軌跡的方程;
(2)過曲線第一象限上一點(其中)作切線交直線于點,連結并延長交直線于點,求當面積取最小值時切點的橫坐標.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,平面五邊形是由邊長為2的正方形與上底為1,高為直角梯形組合而成,將五邊形沿著折疊,得到圖2所示的空間幾何體,其中.
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《張丘建算經(jīng)》是中國古代的著名數(shù)學著作,該書表明:至遲于公元5世紀,中國已經(jīng)系統(tǒng)掌握等差數(shù)列的相關理論,該書上卷22題又“女工善織問題”:“今有女善織,日益功疾,初日織五尺,今一月曰織九匹三丈,問日益幾何?”,大概意思是:有一個女工人善于織布,每天織布的尺數(shù)越來越多且成等差數(shù)列,第一天知5尺,30天共織九匹三丈,問每天增加的織布數(shù)目是多少寸?答案是__________寸.(注:當時一匹為四丈,一丈為十尺,一尺為十寸,結果四舍五入精確到寸)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθρsinθ2=0.
(1)求C和l的直角坐標方程;
(2)設直線l與曲線C的公共點為P,Q,求|PQ|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】坐標系與參數(shù)方程:在平面直角坐標系中,以原點為極點,軸的非負半軸為極軸建立極坐標系,已知點的極坐標為,直線的極坐標方程為,且點在直線上
(Ⅰ)求的值和直線的直角坐標方程及的參數(shù)方程;
(Ⅱ)已知曲線的參數(shù)方程為,(為參數(shù)),直線與交于兩點,求的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正三棱柱的所有棱長都為,是的中點,在邊上,.
(1)證明:平面平面;
(2)若是側面內的動點,且平面.
①在答題卡中作出點的軌跡,并說明軌跡的形狀(不需要說明理由);
②求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形中,,,,.把沿著翻折至的位置,平面,連結,如圖2.
(1)當時,證明:平面平面;
(2)當三棱錐的體積最大時,求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com