【題目】正方形沿對(duì)角線折成直二面角,下列結(jié)論:①所成的角為:②所成的角為:③與面所成角的正弦值為:④二面角的平面角正切值是:其中正確結(jié)論的個(gè)數(shù)為(

A.4B.3C.2D.1

【答案】A

【解析】

中點(diǎn)O,連結(jié),,以O為原點(diǎn),x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法和空間中線線、線面、面面間的位置關(guān)系逐一判斷四個(gè)命題得結(jié)論.

解:取中點(diǎn)O,連結(jié),

∵正方形沿對(duì)角線折成直二面角,

∴以O為原點(diǎn),x軸,y軸,z軸,建立空間直角坐標(biāo)系,

設(shè),則,,,,

,

∴異面直線所成的角為,故①正確:

,,

,∴,故②正確:

設(shè)平面的一個(gè)法向量為

,取,得,,

設(shè)與面所成角為,則,故③正確:

平面的法向量,,,

設(shè)平面的法向量

,取,得,

,

.

∴二面角的平面角正切值是:,故④正確.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,點(diǎn)與拋物線的焦點(diǎn)關(guān)于原點(diǎn)對(duì)稱,過(guò)點(diǎn)且斜率為的直線與拋物線交于不同兩點(diǎn),線段的中點(diǎn)為,直線與拋物線交于兩點(diǎn)

Ⅰ)判斷是否存在實(shí)數(shù)使得四邊形為平行四邊形.若存在,求出的值;若不存在,說(shuō)明理由;

Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是( )

A. 如果兩條平行直線中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行

B. 若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行

C. 垂直于同一條直線的兩條直線相互垂直

D. 若兩條直線與第三條直線所成的角相等,則這兩條直線互相平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,平面

,。分別為線段上的點(diǎn),且。

(1)證明:平面;

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)為,離心率,直線交橢圓于兩點(diǎn).

1)若直線的方程為,求弦的長(zhǎng);

2)如果的重心恰好為橢圓的右焦點(diǎn),求直線方程的一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于,兩點(diǎn),直線,分別與軸交于點(diǎn),求證:在軸上存在點(diǎn),使得無(wú)論非零實(shí)數(shù)怎樣變化,總有為直角,并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線與橢圓交于 兩點(diǎn),直線, 分別與軸交于點(diǎn)

(Ⅰ)求橢圓的方程;

(Ⅱ)以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱的底面是平行四邊形,且,,的中點(diǎn),平面,若,試求異面直線所成角的余弦值_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是邊長(zhǎng)為2的等邊三角形,,當(dāng)三棱錐體積最大時(shí),其外接球的表面積為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案