【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求的單調(diào)區(qū)間;

(2)是否存在正實(shí)數(shù)使得若存在求出,否則說(shuō)明理由;

(3)若存在不等實(shí)數(shù),,使得,證明

【答案】(1)單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間為.(2)不存在(3)詳見解析

【解析】

試題分析:(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)符號(hào)確定單調(diào)區(qū)間:單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間為(2)構(gòu)造函數(shù),,確定其是否有零點(diǎn)即可,先求導(dǎo),確定上的增函數(shù),因此,無(wú)零點(diǎn)(3)為研究方便不妨設(shè),,則需證明,構(gòu)造函數(shù),可證單調(diào)增,即,因此,而上遞減,即

試題解析:解:(1)函數(shù)的單調(diào)遞減區(qū)間是單調(diào)遞增區(qū)間為

(2)不存在正實(shí)數(shù)使得成立,

事實(shí)上,由(1)知函數(shù)上遞增,

而當(dāng),,上遞減,

因此,若存在正實(shí)數(shù)使得,必有

,

因?yàn)?/span>,所以,所以上的增函數(shù),所以,

故不存在正實(shí)數(shù)使得成立

(3)若存在不等實(shí)數(shù),,使得,,必有一個(gè)在,另一個(gè)在,不妨設(shè)

,,(1)知:函數(shù)上單調(diào)遞減,所以;

(2)知:當(dāng),則有,

,所以,

,,(1)知:函數(shù)上單調(diào)遞減,

,即有,

由(1)知:函數(shù)上單調(diào)遞減所以;

綜合得:若存在不等實(shí)數(shù),使得,則總有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線的極坐標(biāo)方程為.

(1)把曲線的方程化為普通方程,的方程化為直角坐標(biāo)方程

(2)若曲線,相交于兩點(diǎn),的中點(diǎn)為,過(guò)點(diǎn)作曲線的垂線交曲線兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、分別為橢圓的左右頂點(diǎn),設(shè)點(diǎn)為直線上不同于點(diǎn)的任意一點(diǎn),若直線、分別與橢圓相交于異于的點(diǎn)、.

1)判斷與以為直徑的圓的位置關(guān)系(內(nèi)、外、上)并證明.

2)記直線與軸的交點(diǎn)為,在直線上,求點(diǎn),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù),( ),若對(duì)任意,總存在,使得成立,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組,第二組,,第五組,右圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )

A. 6 B. 8 C. 12 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是矩形,平面,,以的中點(diǎn)為球心、為直徑的球面交于點(diǎn),交于點(diǎn).

1)求證:平面;

2)求直線與平面所成的角的大。

3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于以下四個(gè)命題:①兩條異面直線有無(wú)數(shù)條公垂線;②直線在平面內(nèi)的射影是直線;③如果兩條直線在同一個(gè)平面內(nèi)的射影平行,那這兩條直線平行;④過(guò)兩條異面直線的一條有且僅有一個(gè)平面與已知直線平行;上述命題中為真命題的個(gè)數(shù)為( )個(gè)

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線的焦點(diǎn)作斜率為的直線交拋物線于、兩點(diǎn),以為直徑的圓與準(zhǔn)線有公共點(diǎn),若,則_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,為直角,,,相交于點(diǎn),,.

1)試用、表示向量;

2)在線段上取一點(diǎn),在線段上取一點(diǎn),使得直線過(guò),設(shè),,求的值;

3)若,過(guò)作線段,使得的中點(diǎn),且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案