【題目】在中,為直角,,,與相交于點,,.
(1)試用、表示向量;
(2)在線段上取一點,在線段上取一點,使得直線過,設,,求的值;
(3)若,過作線段,使得為的中點,且,求的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)設,根據(jù),,三點共線,可得存在非零實數(shù)使得,從而,,利用平面向量基本定理可得,的關系,同理,,三點共線,可得,的關系,由此即可求得,的值,即得解;(2)將兩次線性表示,利用平面向量基本定理,建立等式,消參,即可證得結(jié)論
(3)如圖,設的夾角為,則的夾角為,求出,再求取值范圍.
(1)解:設
,,三點共線,存在非零實數(shù)使得
,
①
又,,三點共線,存在非零實數(shù)使得
,
又②
由①②解得:,
所以.
(2)證明:由(1)知,
,,三點共線,
存在非零實數(shù)使得
消去得.
所以 .
(3)
如圖,設的夾角為,則的夾角為,
所以
所以
所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求的單調(diào)區(qū)間;
(2)是否存在正實數(shù)使得,若存在求出,否則說明理由;
(3)若存在不等實數(shù),,使得,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對數(shù)的底數(shù),e≈2.718…).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是坐標原點,過的直線分別交拋物線于、兩點,直線與過點平行于軸的直線相交于點,過點與此拋物線相切的直線與直線相交于點.則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x,g(x)=x2+ax(其中a∈R).對于不相等的實數(shù)x1,x2,設m=,n=,現(xiàn)有如下命題:
①對于任意不相等的實數(shù)x1,x2,都有m>0;
②對于任意的a及任意不相等的實數(shù)x1,x2,都有n>0;
③對于任意的a,存在不相等的實數(shù)x1,x2,使得m=n;
④對于任意的a,存在不相等的實數(shù)x1,x2,使得m=-n.
其中真命題有___________________(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,.
(1)當時,求函數(shù)圖象在處的切線方程;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當a=1時,求函數(shù)在(2,)處的切線方程:
(2)當a=2時,求函數(shù)的單調(diào)區(qū)間和極值;
(3)若在上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地的出租車價格規(guī)定:起步費元,可行公里,公里以后按每公里元計算,可再行公里;超過公里按每公里元計算,假設不考慮堵車和紅綠燈等所引起的費用,也不考慮實際收取費用去掉不足一元的零頭等實際情況,即每一次乘車的車費由行車里程唯一確定。
(1)若小明乘出租車從學校到家,共公里,請問他應付出租車費多少元?
(2)求車費(元)與行車里程(公里)之間的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com