【題目】如圖,矩形的兩條對角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)在邊所在的直線上.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求矩形外接圓的方程.
【答案】(1)(2)
【解析】試題分析:(1)由已知中邊所在直線方程為,且與垂直,結(jié)合點(diǎn)在直線上,可得到邊所在直線的點(diǎn)斜式方程,即可求得邊所在直線的方程;(2)根據(jù)矩形的性質(zhì)可得矩形外接圓圓心紀(jì)委兩條直線的交點(diǎn),根據(jù)(1)中直線,即可得到圓的圓心和半徑,即可求得矩形外接圓的方程.
試題解析:(1)因?yàn)?/span>邊所在直線方程為,且與垂直,
所以直線的斜率為,又因?yàn)?/span>在直線上,
所以邊所在直線的方程為,即.
(2)由解得點(diǎn)的坐標(biāo)為,
因?yàn)榫匦?/span>兩條對角線的交點(diǎn)為,
所以為距形外接圓的圓心, 又,
從而距形外接圓的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體中,四邊形為平行四邊形, 平面,且, , , .
(Ⅰ)求證:平面平面;
(Ⅱ)若直線與平面所成的角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一枚質(zhì)地均勻且四個(gè)面上分別標(biāo)有1,2,3,4的正四面體先后拋擲兩次,其底面落于桌面上,記第一次朝下面的數(shù)字為,第二次朝下面的數(shù)字為.用表示一個(gè)基本事件.
請寫出所有基本事件;
求滿足條件“”為整數(shù)的事件的概率;
求滿足條件“”的事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯(cuò)誤的是 ( )
A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點(diǎn)E為SD的中點(diǎn).
(1)求證:直線SB∥平面ACE
(2)求證:直線AC⊥平面SBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與圓交于M、N兩點(diǎn),且M、N關(guān)于直線對稱.
(1)求m,k的值;
(2)若直線與圓C交P,Q兩點(diǎn),是否存在實(shí)數(shù)a使得OP⊥OQ,如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個(gè)數(shù)據(jù)的中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)). 點(diǎn)是曲線上兩點(diǎn),點(diǎn)的極坐標(biāo)分別為.
(1)寫出曲線的普通方程和極坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com