Processing math: 100%
精英家教網 > 高中數學 > 題目詳情
1.如圖,已知ABC-A1B1C1是正三棱柱,它的底面邊長和側棱長都是2.
(Ⅰ)求異面直線A1C與B1C1所成角的余弦值大小;
(Ⅱ)求三棱錐C-ABC1的體積VCABC1

分析 (1)求異面直線所成角,常規(guī)思想:平行作角,構造三角形求角;
(2)三棱錐C-ABC1的體積直接求解不太合適,則采用等體積法,可轉化為以C1為頂點,以△ABC為底面,再計算體積.

解答 解:(Ⅰ)如圖,連接A1B,∵正三棱柱ABC-A1B1C1中,C1B1∥CB,
∴∠A1CB(或其補角)是異面直線A1C與B1C1所成的角…(2分)
∵四邊形AA1C1C與AA1B1B都是邊長為2的正方形,
|A1C|=|A1B|=22,
△A1CB中,根據余弦定理,
得cos∠A1CB=222+222222×22×2=482=24…(5分)
∴異面直線A1C與B1C1所成角的余弦值為24…(6分)
(Ⅱ)∵△ABC的面積SABC=34×22=3,高CC1=2,
∴正三棱柱ABC-A1B1C1的體積V=SABC×CC1=23…(8分)
而三棱錐C1-ABC與正三棱柱ABC-A1B1C1同底等高,
∴三棱錐C1-ABC的體積VC1ABC=13VABCA1B1C1=233,…(10分)
又∵VCABC1=VC1ABC,
∴三棱錐C-ABC1的體積為233…(12分)

點評 本題考查了幾何體中異面直線所成角的常規(guī)求解方法,對三棱錐的體積求解方法:公式法和等體積法;本題所考查的求異面直線所成角的方法和求三棱錐體積的等體積法,均要求學生掌握好,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.下列敘述正確的是( �。�
A.數列1,3,4,5可表示為{1,3,4,5}B.數列0,1,2,3,…可表示為{n}
C.數列0,1,0,1,…是常數列D.數列{nn+1}是遞增數列

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知直線x-2y+6=0的傾斜角是α,直線x-3y+6=0的傾斜角是β則( �。�
A.α>βB.α=βC.α<βD.不能判定

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.已知點A(-1,-1),若點P(a,b)為第一象限內的點,且滿足|AP|=22,則ab的最大值為1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設集合A={1,2,3,5},集合A∩B={2,5},A∪B={1,2,3,4,5,6},則集合B=( �。�
A.{2,5}B.[2,4,5}C.{2,5,6}D.{2,4,5,6}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.已知函數f(x)=x+6,則f(f(9))=9.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.過圓(x-1)2+(y-2)2=2上一點(2,3)作圓的切線,則切線方程為( �。�
A.x+y-5=0B.x+y-1=0C.x-y-5=0D.x-y-1=0

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.若1a10,則下列不等式:①a<b; ②|a|>|b|;③a+b<ab;④a+a2中,正確的不等式有( �。�
A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.設數列{an}的前n項和為Sn,且Sn=12n2+12n,n∈N*
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設數列bn=2-nan求數列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案