【題目】已知 且函數(shù)y=f(x)﹣x恰有3個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(0,+∞)
B.[﹣1,0)
C.[﹣1,+∞)
D.[﹣2,+∞)

【答案】C
【解析】解:因?yàn)楫?dāng)x≥0的時(shí)候,f(x)=f(x﹣1),所以所有大于等于0的x代入得到的f(x)相當(dāng)于在[﹣1,0)重復(fù)的周期函數(shù)
x∈[﹣1,0)時(shí),y=a﹣x2﹣2x=1+a﹣(x+1)2 , 對(duì)稱(chēng)軸x=﹣1,頂點(diǎn)(﹣1,1+a)
①如果a<﹣1,函數(shù)y=f(x)﹣x至多有2個(gè)不同的零點(diǎn);
②如果a=﹣1,則y有一個(gè)零點(diǎn)在區(qū)間(﹣1,0),有一個(gè)零點(diǎn)在(﹣∞,﹣1),一個(gè)零點(diǎn)是原點(diǎn);
③如果a>﹣1,則有一個(gè)零點(diǎn)在(﹣∞,﹣1),y右邊有兩個(gè)零點(diǎn),
故實(shí)數(shù)a的取值范圍是[﹣1,+∞)
故選C.
【考點(diǎn)精析】掌握函數(shù)的零點(diǎn)與方程根的關(guān)系是解答本題的根本,需要知道二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2x+alnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)t≥1時(shí),不等式f(2t﹣1)≥2f(t)﹣3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a>0,b>0,若關(guān)于x,y的方程組 無(wú)解,則a+b的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某飛行器在4千米高空飛行,從距著陸點(diǎn)A的水平距離10千米處開(kāi)始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x﹣1.
(1)求f(x)的函數(shù)解析式,并用分段函數(shù)的形式給出;
(2)作出函數(shù)f(x)的簡(jiǎn)圖;
(3)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
(1)求橢圓C的方程;
(2)設(shè)直線(xiàn)l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為 ,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=的值域是[0,+∞),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n和為Sn , a1=1,Sn=nan﹣2n2+2n(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫(xiě)出an和Sn關(guān)于n的表達(dá)式;
(2)是否存在自然數(shù)n,使得S1+ + +…+ +2n=1124?若存在,求出n的值; 若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)cn= (n∈N*),Tn=c1+c2+c3+…+cn(n∈N*),若不等式Tn (m∈Z),對(duì)n∈N*恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線(xiàn)稱(chēng)為一對(duì)“相關(guān)曲線(xiàn)”.已知F1 , F2是一對(duì)相關(guān)曲線(xiàn)的焦點(diǎn),P是橢圓和雙曲線(xiàn)在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時(shí),這一對(duì)相關(guān)曲線(xiàn)中橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案