如圖,在三棱錐中,,,,則BC和平面ACD所成角的正弦值為     
.

試題分析:可以以B為原點,以BA,BC,BD所在直線為坐標軸建立空間直角坐標系,求出直線BC的方向向量和平面ACD的法向量,然后運用向量的線面角公式即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平行四邊形中,為折線,把折起,使平面平面,連接

(1)求證:;
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,平面PAC⊥平面ABCD,且PAAC,PAAD=2.四邊形ABCD滿足BCAD,ABAD,ABBC=1.點EF分別為側(cè)棱PB,PC上的點,且λ.

(1)求證:EF∥平面PAD.
(2)當(dāng)λ時,求異面直線BFCD所成角的余弦值;
(3)是否存在實數(shù)λ,使得平面AFD⊥平面PCD?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.

(Ⅰ)求異面直線EF與BC所成角的大;
(Ⅱ)若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知向量
i
j
,
k
不共面,向量
a
=
i
-2
j
+
k
b
=-
i
+3
j
+2
k
,
c
=-3
i
+x
j
共面,則x=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,分別是平面的法向量,則平面的位置關(guān)系式(   )
A.平行B.垂直
C.所成的二面角為銳角 D.所成的二面角為鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正三棱柱ABC-A1B1C1的側(cè)棱長與底面邊長相等,則AB1與側(cè)面ACC1A1所成角的正弦等于(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,頂點在底面內(nèi)的射影恰好落在的中點上,又,

(1)求證:;
(2)若,求直線所成角的余弦值;
(3)若平面與平面所成的角為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),以點(-2,1)為始點,則向量2的終點坐標是        

查看答案和解析>>

同步練習(xí)冊答案