【題目】數(shù)列{an}中,a1=2, (n∈N*).
(1)證明數(shù)列 是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,若數(shù)列{bn}的前n項(xiàng)和是Tn , 求證: .
【答案】
(1)證明:數(shù)列{an}中,a1=2, (n∈N*),
= ,則數(shù)列 是首項(xiàng)為2,公比為 的等比數(shù)列;
則 =2( )n﹣1,
即為an=2n( )n﹣1
(2)解:證明: =
= ,
由2n=(1+1)n=1+n+ +…+ +1≥2n,
則4n≥4n2,
即有 ≤ = ( ﹣ ),
數(shù)列{bn}的前n項(xiàng)和是Tn= + + +…+
≤ (1﹣ + /span> ﹣ + ﹣ +…+ ﹣ )
= (1﹣ )< ,
則 .
【解析】(1)將原式兩邊除以n+1,結(jié)合等比數(shù)列的定義和通項(xiàng)公式,即可得證;(2)求得 = ,可得4n≥4n2 , 即有 ≤ = ( ﹣ ),運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,結(jié)合不等式的性質(zhì),即可得證.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和,掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAB⊥底面ABCD,△PAB為正三角形.AB⊥AD,CD⊥AD,點(diǎn)E、M為線段BC、AD的中點(diǎn),F(xiàn),G分別為線段PA,AE上一點(diǎn),且AB=AD=2,PF=2FA.
(1)確定點(diǎn)G的位置,使得FG∥平面PCD;
(2)試問(wèn):直線CD上是否存在一點(diǎn)Q,使得平面PAB與平面PMQ所成銳二面角的大小為30°,若存在,求DQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題
(1)求函數(shù)y=2|x﹣1|﹣|x﹣4|的值域;
(2)若不等式2|x﹣1|﹣|x﹣a|≥﹣1在x∈R上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了宣傳環(huán)保知識(shí),舉辦了一次“環(huán)保知識(shí)知多少”的問(wèn)卷調(diào)查活動(dòng)(一人答一份).現(xiàn)從回收的年齡在2060歲的問(wèn)卷中隨機(jī)抽取了100份, 統(tǒng)計(jì)結(jié)果如下面的圖表所示.
年齡 分組 | 抽取份 數(shù) | 答對(duì)全卷的人數(shù) | 答對(duì)全卷的人數(shù)占本組的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | n | 27 | 0.9 |
[40,50) | 10 | 4 | b |
[50,60] | 20 | a | 0.1 |
(1)分別求出n, a, b, c的值;
(2)從年齡在[40,60]答對(duì)全卷的人中隨機(jī)抽取2人授予“環(huán)保之星”,求年齡在[50,60] 的人中至少有1人被授予“環(huán)保之星”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓C與x軸相切于點(diǎn)T(2,0),與y軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的下方),且|MN|=3.
(Ⅰ)求圓C的方程;
(Ⅱ)過(guò)點(diǎn)M任作一條直線與橢圓 相交于兩點(diǎn)A、B,連接AN、BN,求證:∠ANM=∠BNM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】①在同一坐標(biāo)系中,與的圖象關(guān)于軸對(duì)稱
②是奇函數(shù)
③與的圖象關(guān)于成中心對(duì)稱
④的最大值為,
以上四個(gè)判斷正確有____________________(寫上序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè), 分別為雙曲線的左、右焦點(diǎn), 為雙曲線的左頂點(diǎn),以, 為直徑的圓交雙曲線某條漸近線于, 兩點(diǎn),且滿足,則該雙曲線的離心率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽,共有900名學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)下面尚未完成的頻率分布表和頻率分布直方圖(如圖),解答下列問(wèn)題:
分組 | 頻數(shù) | 頻率 |
[50,60) | 4 | 0.08 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | 0.20 |
[80,90) | 16 | 0.32 |
[90,100] | ||
合計(jì) |
(1)填充頻率分布表中的空格;
(2)不具體計(jì)算頻率/組距,補(bǔ)全頻率分布直方圖.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com