【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

【答案】(1)第二種生產(chǎn)方式的效率更高. 理由見解析

(2)80

(3)

【解析】分析:(1)計算兩種生產(chǎn)方式的平均時間即可。

(2)計算出中位數(shù),再由莖葉圖數(shù)據(jù)完成列聯(lián)表。

(3)由公式計算出,再與6.635比較可得結(jié)果。

詳解:(1)第二種生產(chǎn)方式的效率更高.

理由如下:

(i)由莖葉圖可知:用第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時間至少80分鐘,用第二種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時間至多79分鐘.因此第二種生產(chǎn)方式的效率更高.

(ii)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間的中位數(shù)為85.5分鐘,用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間的中位數(shù)為73.5分鐘.因此第二種生產(chǎn)方式的效率更高.

(iii)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時間高于80分鐘;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時間低于80分鐘,因此第二種生產(chǎn)方式的效率更高.

(iv)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間分布在莖8上的最多,關(guān)于莖8大致呈對稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間分布在莖7上的最多,關(guān)于莖7大致呈對稱分布,又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時間分布的區(qū)間相同,故可以認(rèn)為用第二種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時間比用第一種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時間更少,因此第二種生產(chǎn)方式的效率更高.學(xué)科*網(wǎng)

以上給出了4種理由,考生答出其中任意一種或其他合理理由均可得分.

(2)由莖葉圖知.

列聯(lián)表如下:

超過

不超過

第一種生產(chǎn)方式

15

5

第二種生產(chǎn)方式

5

15

(3)由于,所以有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為利于分層教學(xué),某學(xué)校根據(jù)學(xué)生的情況分成了A,B,C三類,經(jīng)過一段時間的學(xué)習(xí)后在三類學(xué)生中分別隨機(jī)抽取了1個學(xué)生的5次考試成緞,其統(tǒng)計表如下:

A類

第x次

1

2

3

4

4

分?jǐn)?shù)y(滿足150)

145

83

95

72

110

,;

B類

第x次

1

2

3

4

4

分?jǐn)?shù)y(滿足150)

85

93

90

76

101

;

C類

第x次

1

2

3

4

4

分?jǐn)?shù)y(滿足150)

85

92

101

100

112

,;

(1)經(jīng)計算己知A,B的相關(guān)系數(shù)分別為,.,請計算出C學(xué)生的的相關(guān)系數(shù),并通過數(shù)據(jù)的分析回答抽到的哪類學(xué)生學(xué)習(xí)成績最穩(wěn)定;(結(jié)果保留兩位有效數(shù)字,越大認(rèn)為成績越穩(wěn)定)

(2)利用(1)中成績最穩(wěn)定的學(xué)生的樣本數(shù)據(jù),已知線性回歸直線方程為,利用線性回歸直線方程預(yù)測該生第十次的成績.

附相關(guān)系數(shù),線性回歸直線方程,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦“中國詩詞大賽”活動,某班派出甲乙兩名選手同時參加比賽.大賽設(shè)有15個詩詞填空題,其中“唐詩”、“宋詞”和“毛澤東詩詞”各5個.每位選手從三類詩詞中各任選1個進(jìn)行作答,3個全答對選手得3分,答對2個選手得2分,答對1個選手得1分,一個都沒答對選手得0分.已知“唐詩”、“宋詞”和“毛澤東詩詞”中甲能答對的題目個數(shù)依次為5,4,3,乙能答對的題目個數(shù)依此為4,5,4,假設(shè)每人各題答對與否互不影響,甲乙兩人答對與否也互不影響. 求:
(Ⅰ)甲乙兩人同時得到3分的概率;
(Ⅱ)甲乙兩人得分之和ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù))與的圖象上存在關(guān)于軸對稱的點(diǎn),則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查。

I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。

II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,

1)列出所有可能的抽取結(jié)果;

2)求抽取的2所學(xué)校均為小學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形,的中點(diǎn)為,且平面

(1)證明:;

(2)若,,試畫出二面角的平面角,并求它的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是正方形, 平面 , .

(1)求證: 平面

(2)求證: 平面;

(3)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩直線

1)求直線的交點(diǎn)的坐標(biāo);

2)求過交點(diǎn),且在兩坐標(biāo)軸截距相等的直線方程;

3)若直線不能構(gòu)成三角形,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案