給出下列四個(gè)說(shuō)法:
①當(dāng)n=0時(shí),y=xn的圖象是一個(gè)點(diǎn);
②冪函數(shù)的圖象都經(jīng)過(guò)點(diǎn)(0,0),(1,1);
③冪函數(shù)的圖象不可能出現(xiàn)在第四象限;
④冪函數(shù)y=xn在第一象限為減函數(shù),則n<0.
其中正確的說(shuō)法的序號(hào)是
 
考點(diǎn):冪函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)冪函數(shù)的圖象和性質(zhì),我們根據(jù)定義域,特殊點(diǎn),單調(diào)性及圖象經(jīng)過(guò)的象限,對(duì)四個(gè)答案進(jìn)行分析,即可得到答案.
解答: 解:對(duì)于①,當(dāng)n=0時(shí),y=x0=1的圖象是一條直線,故①錯(cuò)誤;
對(duì)于②,例如y=
1
x
的圖象不過(guò)點(diǎn)(0,0).故②錯(cuò)誤;
對(duì)于③,由冪函數(shù)的性質(zhì),冪函數(shù)的圖象一定過(guò)第一象限,不可能出現(xiàn)在第四象限,故③正確
對(duì)于④中,冪函數(shù)y=xn在第一象限為減函數(shù),則n<0,正確;
故答案為:③④
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是冪函數(shù)的單調(diào)性、奇偶性及其應(yīng)用,冪函數(shù)的圖象,其中熟練掌握冪函數(shù)圖象的形狀,位置,特殊點(diǎn),及指數(shù)與函數(shù)性質(zhì)的關(guān)系,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:2x+y-2=0,l2:ax+4y+1=0,若l1∥l2,則a的值為(  )
A、8
B、2
C、-
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l將圓x2+y2-2x+4y-4=0平分,且在兩坐標(biāo)軸上的截距相等,則直線l的方程是( 。
A、x-y+1=0,2x-y=0
B、x-y-1=0,x-2y=0
C、x+y+1=0,2x+y=0
D、x-y+1=0,x+2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x-5(x≥6)
f(x+4)(x<6)
,則f(2)的值為(  )
A、-3B、3C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N*)
,p(x)=
ex-gn(x)
x
(e是自然對(duì)數(shù)的底)
(1)當(dāng)n=1時(shí),判斷函數(shù)p(x)有沒(méi)有零點(diǎn),并說(shuō)明理由;
(2)當(dāng)n=2時(shí),求函數(shù)f(x)=
p(x),x≠0
0,x=0
的最小值;
(3)數(shù)列{an}的通項(xiàng)為an=(
2
n
)n-1
,前n項(xiàng)和為Sn,對(duì)任意正整數(shù)n,比較gn(1)與Sn+1的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中不正確的個(gè)數(shù)是(  )
①y=sinx的遞增區(qū)間是[2kπ,2kπ+
π
2
](k∈Z);  
②y=sinx在第一象限是增函數(shù);
③y=cosx在[-π,0]上是增函數(shù);             
④y=tanx在其定義域上是增函數(shù).
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l,a,b,平面α,β,γ,則下列命題正確的是( 。
A、若l⊥a,l⊥b,a?α,b?α,則l⊥α
B、若α∩β=a,α⊥β,l⊥a,則l⊥β
C、若α∥β,α∩γ=a,β∩γ=b,則a∥b
D、若α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)x,y,z滿足x2+y2+z2=8,設(shè)M=
x4
9
+
y4
16
+
z4
25
,當(dāng)x、y、z為何值時(shí),M取得最小值?并求出M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲從空間四邊形的四個(gè)頂點(diǎn)中任意選擇兩點(diǎn)連成直線,乙也從該四邊形的四個(gè)頂點(diǎn)中任意選擇兩點(diǎn)連成直線,則所得的兩條直線互為異面直線的概率為( 。
A、
1
2
B、
1
4
C、
1
6
D、
1
12

查看答案和解析>>

同步練習(xí)冊(cè)答案