【題目】據(jù)研究,甲磁盤受到病毒感染,感染的量y(單位: 比特數(shù))與時間x(單位:秒)的函數(shù)關系是,乙磁盤受到病毒感染,感染的量y(單位: 比特數(shù))與時間x(單位:秒)的函數(shù)關系是,顯然當時,甲磁盤受到病毒感染增長率比乙磁盤受到病毒感染增長率大.試根據(jù)上述事實提煉一個不等式,并證明之.

【答案】

【解析】試題分析:因為甲磁盤受到感染的感染增長率是的導數(shù),乙磁盤受到病毒感染增長率為的導數(shù),又因為當時,甲磁盤受到病毒感染增長率比乙磁盤受到病毒感染增長率大構造函數(shù),利用導數(shù)證明即可.

試題解析因為甲磁盤受到感染的感染增長率是的導數(shù),乙磁盤受到病毒感染增長率為的導數(shù)

又因為當時,甲磁盤受到病毒感染增長率比乙磁盤受到病毒感染增長率大

下面證明:

,,,所以上是增函數(shù),

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)若函數(shù)上為減函數(shù),求實數(shù)的最小值;

2)若存在,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個交點的距離為π.若f(x)>1對任意x∈(﹣ , )恒成立,則φ的取值范圍是(
A.[ , ]
B.[ , ]
C.[ , ]
D.( , ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用秦九韶算法判斷方程x5+x3+x2-1=0[0,2]上是否存在實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個零點,則a的取值范圍為( 。

A. B. C. D.

【答案】D

【解析】

恰好有3個零點, 等價于的圖象有三個不同的交點,

作出的圖象,根據(jù)數(shù)形結合可得結果.

恰好有3個零點,

等價于有三個根,

等價于的圖象有三個不同的交點,

作出的圖象,如圖,

由圖可知,

時,的圖象有三個交點,

即當時,恰好有3個零點,

所以,的取值范圍是故選D.

【點睛】

本題主要考查函數(shù)的零點與分段函數(shù)的性質(zhì),屬于難題. 函數(shù)的性質(zhì)問題以及函數(shù)零點問題是高考的高頻考點,考生需要對初高中階段學習的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對稱性非常熟悉;另外,函數(shù)零點的幾種等價形式:函數(shù)的零點函數(shù)軸的交點方程的根函數(shù)的交點.

型】單選題
束】
13

【題目】設集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},則b=______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象過的(-2,16).

(1)求函數(shù)f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范圍.

【答案】(1)f(x)=; (2)m<2.

【解析】

(1)將代入可得從而可得函數(shù)的解析式;(2)根據(jù)(1)中所求解析式判斷是實數(shù)集上的減函數(shù),不等式等價于,解不等式即可得結果.

(1)∵函數(shù)f(x)=ax(a>0且a≠1)的圖象過點(-2,16),

∴a-2=16

∴a=,即f(x)=

(2)∵f(x)=為減函數(shù),f(2m+5)<f(3m+3),

∴2m+5>3m+3,

解得m<2.

【點睛】

本題主要考查了指數(shù)函數(shù)的解析式和指數(shù)函數(shù)單調(diào)性的應用,意在考查綜合應用所學知識解答問題的能力,屬于基礎題.

型】解答
束】
19

【題目】2017年APEC會議于11月10日至11日在越南峴港舉行,某研究機構為了了解各年齡層對APEC會議的關注程度,隨機選取了100名年齡在[20,45]內(nèi)的市民舉行了調(diào)查,并將結果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分布為[20,25),[25.30),[30,35),[35,40),[40,45]).

(1)求選取的市民年齡在[30,35)內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人參與APEC會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在[35,40)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,點在線段上.

(1)若中點,證明:平面;

(2)當時,求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了了解學生對消防知識的了解情況,從高一年級和高二年級各選取100名同學進行消防知識競賽.下圖(1)和下圖(2)分別是對高一年級和高二年級參加競賽的學生成績按, , 分組,得到的頻率分布直方圖.

(1)請計算高一年級和高二年級成績小于60分的人數(shù);

(2)完成下面列聯(lián)表,并回答:有多大的把握可以認為“學生所在的年級與消防常識的了解存在相關性”?

附:臨界值表及參考公式: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=cos(2x-).

(1)利用“五點法”,完成以下表格,并畫出函數(shù)fx)在一個周期上的圖象;

(2)求函數(shù)fx)的單調(diào)遞減區(qū)間和對稱中心的坐標;

(3)如何由y=cosx的圖象變換得到fx)的圖象.

2x-

0

π

x

fx

查看答案和解析>>

同步練習冊答案