【題目】已知函數(shù).
(1)若,函數(shù)的圖像與函數(shù)的圖像相切,求的值;
(2)若, ,函數(shù)滿足對任意,都有恒成立,求的取值范圍;
(3)若,函數(shù),且有兩個(gè)極值點(diǎn),其中,求的最小值.
【答案】(1);(2);(3).
【解析】試題分析:(1)若,函數(shù)的圖像與的圖像相切,設(shè)切點(diǎn)為,則切線方程為,所以解得即可(2)根據(jù)在遞增.不妨設(shè),原不等式,即.設(shè),則原不等式在上遞減即在上恒成立,采用變量分離,求新函數(shù)的最值即可得解(3) 函數(shù) , ,由題意知是的兩根,根據(jù), ,構(gòu)造新函數(shù)進(jìn)行求導(dǎo)即可求最小值.
試題解析:
(1)若,函數(shù)的圖像與的圖像相切,設(shè)切點(diǎn)為,則切線方程為,所以得.所以.
(2)當(dāng)時(shí), , ,所以在遞增.
不妨設(shè),原不等式,即.
設(shè),則原不等式在上遞減
即在上恒成立.所以在上恒成立.
設(shè),在上遞減,所以,所以,又,所以.
(3)若,函數(shù)
,由題意知是的兩根,
∴, ,
令,
當(dāng)時(shí), , 在上單調(diào)遞減, 的最小值為
即的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部是等腰梯形,其中為2米,梯形的高為1米, 為3米,上部是個(gè)半圓,固定點(diǎn)為的中點(diǎn). 是由電腦控制可以上下滑動(dòng)的伸縮橫桿(橫桿面積可忽略不計(jì)),且滑動(dòng)過程中始終保持和平行.當(dāng)位于下方和上方時(shí),通風(fēng)窗的形狀均為矩形(陰影部分均不通風(fēng)).
(1)設(shè)與之間的距離為(且)米,試將通風(fēng)窗的通風(fēng)面積(平方米)表示成關(guān)于的函數(shù);
(2)當(dāng)與之間的距離為多少米時(shí),通風(fēng)窗的通風(fēng)面積取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(sinx+cosx)2-2cos2x,
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)當(dāng)x∈時(shí),求f(x)的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若在處取極值,求在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若有唯一的零點(diǎn),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①命題“, ”的否定是:“, ”;
②若樣本數(shù)據(jù)的平均值和方差分別為和則數(shù)據(jù)的平均值和標(biāo)準(zhǔn)差分別為, ;
③兩個(gè)事件不是互斥事件的必要不充分條件是兩個(gè)事件不是對立事件;
④在列聯(lián)表中,若比值與相差越大,則兩個(gè)分類變量有關(guān)系的可能性就越大.
⑤已知為兩個(gè)平面,且, 為直線.則命題:“若,則”的逆命題和否命題均為假命題.
⑥設(shè)定點(diǎn)、,動(dòng)點(diǎn)滿足條件為正常數(shù)),則的軌跡是橢圓.其中真命題的個(gè)數(shù)為( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建一個(gè)矩形游泳池ABCD及其矩形附屬設(shè)施EFGH,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為O,半徑為R,矩形的一邊AB在直徑上,點(diǎn)C、D、G、H在圓周上,E、F在邊CD上,且,設(shè)
(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;
(2)當(dāng)為何值時(shí),能符合園林局的要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),關(guān)于實(shí)數(shù)的不等式的解集為.
(1)當(dāng)時(shí),解關(guān)于的不等式: ;
(2)是否存在實(shí)數(shù),使得關(guān)于的函數(shù)()的最小值為?若存在,求實(shí)數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn),曲線: (為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,有相同單位長度的極坐標(biāo)系中,直線: .
(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)求與直線平行且與曲線相切的直線的直角坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型娛樂場有兩種型號(hào)的水上摩托,管理人員為了了解水上摩托的使用及給娛樂城帶來的經(jīng)濟(jì)收入情況,對該場所最近6年水上摩托的使用情況進(jìn)行了統(tǒng)計(jì),得到相關(guān)數(shù)據(jù)如表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
使用率() | 11 | 13 | 16 | 15 | 20 | 21 |
(1)請根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關(guān)于年份代碼的線性回歸方程,并預(yù)測該娛樂場2018年水上摩托的使用率;
(2)隨著生活水平的提高,外出旅游的老百姓越來越多,該娛樂場根據(jù)自身的發(fā)展需要,準(zhǔn)備重新購進(jìn)一批水上摩托,其型號(hào)主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價(jià)格分別為1萬元、1.2萬元.根據(jù)以往經(jīng)驗(yàn),每輛水上摩托的使用年限不超過四年.娛樂場管理部對已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進(jìn)行統(tǒng)計(jì),使用年限如條形圖所示:
已知每輛水上摩托從購入到淘汰平均年收益是0.8萬元,若用頻率作為概率,以每輛水上摩托純利潤(純利潤收益購車成本)的期望值為參考值,則該娛樂場的負(fù)責(zé)人應(yīng)該選購Ⅰ型水上摩托還是Ⅱ型水上摩托?
附:回歸直線方程為,其中, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com