【題目】已知函數(shù),若關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

【答案】C

【解析】

關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)根等價(jià)于圖象與直線(xiàn)有兩個(gè)不同的交點(diǎn),再作圖像觀(guān)察交點(diǎn)個(gè)數(shù)即可得解.

解:作出圖象,如圖所示,由題意知函數(shù)的圖象與直線(xiàn)有兩個(gè)不同的交點(diǎn),且直線(xiàn)恒過(guò)定點(diǎn).

當(dāng)時(shí),,則.設(shè)曲線(xiàn)在點(diǎn)處的切線(xiàn)過(guò)點(diǎn),又曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為,將代入上式,得,解得,所以,結(jié)合圖象知當(dāng)時(shí),函數(shù)的圖象與直線(xiàn)有兩個(gè)不同的交點(diǎn);

當(dāng)時(shí),,則,設(shè)曲線(xiàn)在點(diǎn)處的切線(xiàn)過(guò)點(diǎn),又曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為,將代入上式,得,解得,所以,結(jié)合圖象知當(dāng)時(shí),函數(shù)的圖象與直線(xiàn)有兩個(gè)不同的交點(diǎn);

設(shè)點(diǎn),則,由圖象知當(dāng)時(shí),方程也有兩個(gè)不同的實(shí)數(shù)根.

綜上,實(shí)數(shù)的取值范圍為.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋擲一枚骰子,記事件為“落地時(shí)向上的數(shù)是奇數(shù)”,事件為“落地時(shí)向上的數(shù)是偶數(shù)”,事件為“落地時(shí)向上的數(shù)是的倍數(shù)”,事件為“落地時(shí)向上的數(shù)是”,則下列每對(duì)事件是互斥事件但不是對(duì)立事件的是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】食品安全問(wèn)題越來(lái)越引起人們的重視,農(nóng)藥、化肥的濫用對(duì)人民群眾的健康帶來(lái)一定的危害,為了給消費(fèi)者帶來(lái)放心的蔬菜,某農(nóng)村合作社每年投入200萬(wàn)元,搭建了甲、乙兩個(gè)無(wú)公害蔬菜大棚,每個(gè)大棚至少要投入20萬(wàn)元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬(wàn)元)滿(mǎn)足.設(shè)甲大棚的投入為(單位:萬(wàn)元),每年兩個(gè)大棚的總收益為(單位:萬(wàn)元)

1)求的值;

2)試問(wèn)如何安排甲、乙兩個(gè)大棚的投入,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè),若對(duì),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)對(duì)于任意的都有,給出以下命題:

上是增函數(shù);

②可能存在,使得對(duì)任意的恒成立;

③可能存在,使得成立;

沒(méi)有最大值和最小值.

則正確的命題的個(gè)數(shù)為( ).

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的極小值為.

(1)求的單調(diào)區(qū)間;

(2)證明:(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),直線(xiàn)為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為,且滿(mǎn)足

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)作直線(xiàn)與軌跡交于兩點(diǎn),為直線(xiàn)上一點(diǎn),且滿(mǎn)足,若的面積為,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)yfx)的導(dǎo)函數(shù)yf′(x)的圖象,給出下列命題:

3是函數(shù)yfx)的極值點(diǎn);

1是函數(shù)yfx)的最小值點(diǎn);

yfx)在x0處切線(xiàn)的斜率小于零;

yfx)在區(qū)間(﹣31)上單調(diào)遞增.

則正確命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和定點(diǎn),其中點(diǎn)是該圓的圓心,是圓上任意一點(diǎn),線(xiàn)段的垂直平分線(xiàn)交于點(diǎn),設(shè)動(dòng)點(diǎn)的軌跡為

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)設(shè)曲線(xiàn)軸交于兩點(diǎn),點(diǎn)是曲線(xiàn)上異于的任意一點(diǎn),記直線(xiàn),的斜率分別為,.證明:是定值;

(3)設(shè)點(diǎn)是曲線(xiàn)上另一個(gè)異于的點(diǎn),且直線(xiàn)的斜率滿(mǎn)足,試探究:直線(xiàn)是否經(jīng)過(guò)定點(diǎn)?如果是,求出該定點(diǎn),如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案