【題目】已知點,直線:,為平面上的動點,過點作直線的垂線,垂足為,且滿足.
(1)求動點的軌跡的方程;
(2)過點作直線與軌跡交于,兩點,為直線上一點,且滿足,若的面積為,求直線的方程.
【答案】(1);(2)或
【解析】分析:(1)設,則,利用,即可求解軌跡的方程;
(II)設的方程為,聯(lián)立方程組,求得,又由,得到點,在利用弦長公式和點到直線的距離公式,即可表達的面積,求得的值,進而得到直線的方程;
詳解:(1)設,則,
,,
,,即軌跡的方程為.
(2)法一:顯然直線的斜率存在,設的方程為,
由,消去可得:,
設,,,
,,
即
,
,即
,,即,
,
到直線的距離,
,解得,
直線的方程為或.
法2:(Ⅱ)設,AB的中點為
則
直線的方程為,
過點A,B分別作,因為為AB 的中點,
所以在中,
故是直角梯形的中位線,可得,從而
點到直線的距離為:
因為E點在直線上,所以有,從而
由解得
所以直線的方程為或.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,.
(1)當時,判斷曲線與曲線的位置關系;
(2)當曲線上有且只有一點到曲線的距離等于時,求曲線上到曲線距離為的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,平面.
(1)證明:平面;
(2)過點作一平行于平面的截面,畫出該截面,說明理由,并求夾在該截面與平面之間的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為,且,圓與軸交于點,,為橢圓上的動點,,面積最大值為.
(1)求圓與橢圓的方程;
(2)圓的切線交橢圓于點,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查某生產(chǎn)線上質(zhì)量監(jiān)督員甲是否在現(xiàn)場對產(chǎn)品質(zhì)量好壞有無影響,現(xiàn)統(tǒng)計數(shù)據(jù)如下:質(zhì)量監(jiān)督員甲在現(xiàn)場時,1 000件產(chǎn)品中合格品有990件,次品有10件,甲不在現(xiàn)場時,500件產(chǎn)品中有合格品490件,次品有10件.
(1)補充下面列聯(lián)表,并初步判斷甲在不在現(xiàn)場與產(chǎn)品質(zhì)量是否有關:
合格品數(shù)/件 | 次品數(shù)/件 | 總數(shù)/件 | |
甲在現(xiàn)場 | 990 | ||
甲不在現(xiàn)場 | 10 | ||
總數(shù)/件 |
(2)用獨立性檢驗的方法判斷能否在犯錯誤的概率不超過0.15的前提下認為“甲在不在現(xiàn)場與產(chǎn)品質(zhì)量有關”?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當m=1時,求曲線y=f(x)在點(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有A,B兩個投資項目,投資兩項目所獲得利潤分別是和(萬元),它們與投入資金(萬元)的關系依次是:其中與平方根成正比,且當為4(萬元)時為1(萬元),又與成正比,當為4(萬元)時也是1(萬元);某人甲有3萬元資金投資.
(Ⅰ)分別求出,與的函數(shù)關系式;
(Ⅱ)請幫甲設計一個合理的投資方案,使其獲利最大,并求出最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結(jié)論中:
①定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)在R上是增函數(shù);②若f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);③函數(shù)y=x-0.5是(0,1)上的減函數(shù);④對應法則和值域相同的函數(shù)的定義域也相同;⑤若x0是二次函數(shù)y=f(x)的零點,且m<x0<n,那么f(m)f(n)<0一定成立.
寫出上述所有正確結(jié)論的序號:_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com