【題目】設(shè),,為取自某總體的樣本,其算術(shù)平均值稱為樣本均值,一般用表示,即,在分組樣本場合,樣本均值的近似公式為,其中k為組數(shù),為第i組的組中值,為第i組的頻數(shù).某單位收集到20名青年的某天娛樂支出費用數(shù)據(jù):

79 84 84 88 92 93 94 97 98 99

100 101 101 102 102 108 110 113 118 125

若將分為五組,第一組為,根據(jù)分組樣本計算樣本均值為(

A.99.4B.143.16C.100D.11.96

【答案】C

【解析】

根據(jù)分組情況,統(tǒng)計組每組的頻數(shù),求出頻率,代入公式即可求解.

頻數(shù)頻率表

分組區(qū)間組中值82,頻數(shù)3,頻率(15

分組區(qū)間組中值92,頻數(shù)5,頻率(25

分組區(qū)間組中值102,頻數(shù)7,頻率(35

分組區(qū)間組中值112,頻數(shù)3,頻率(15

分組區(qū)間組中值122,頻數(shù)2,頻率(10

.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,若對于任意,存在,使得成立,則稱集合集合”.給出下列5個集合:

;②;③;

;⑤.

其中是集合的所有序號是(

A.②③B.①④⑤C.②③⑤D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù),區(qū)間為函數(shù)的一個可等域區(qū)間.給出下列4個函數(shù):

;; ;

其中存在唯一可等域區(qū)間可等域函數(shù)為( )

(A)①②③ (B)②③ (C)①③ (D)②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),滿足.設(shè)上任一點,過的切線,其斜率滿足

1)求函數(shù)的解析式;

2)若數(shù)列滿足.設(shè)為正常數(shù).

①求

②若不等式對任意的恒成立,則實數(shù)是否存在最大值?若存在,請求出這個值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,將曲線上的每一個點的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過原點且關(guān)于軸對稱的兩條直線分別交曲線、,且點在第一象限,當(dāng)四邊形的周長最大時,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)經(jīng)過點,離心率為,,分別為橢圓的左、右焦點.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若點)在橢圓C上,求證;直線與直線關(guān)于直線l對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=0.

(1)求A;

(2)已知a=2,B=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點在直線.

(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;

(Ⅱ)求曲線的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCDADBC,DAAB,AD2,ABBC1CD,點EPD中點.

1)求證:CE∥平面PAB;

2)若PA2PD2,∠PAB,求平面PBD與平面ECD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案