如圖,動(dòng)點(diǎn)M與兩定點(diǎn)A(-1,0),B(1,0)構(gòu)成△MAB,且直線MA,MB的斜率之積為4,設(shè)動(dòng)點(diǎn)M的軌跡為C,試求軌跡C的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知曲線C的方程為:ax2+ay2-2a2x-4y=0(a≠0,a為常數(shù)).
(1)判斷曲線C的形狀;
(2)設(shè)曲線C分別與x軸,y軸交于點(diǎn)A,B(A,B不同于原點(diǎn)O),試判斷△AOB的面積S是否為定值?并證明你的判斷;
(3)設(shè)直線l:y=-2x+4與曲線C交于不同的兩點(diǎn)M,N,且|OM|=|ON|,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知雙曲線-=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過(guò)A作圓的切線,斜率為-,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,拋物線C1:y2=2px和圓C2:(x-)2+y2=,其中p>0,直線l經(jīng)過(guò)C1的焦點(diǎn),依次交C1,C2于A,B,C,D四點(diǎn),則·的值為( )
A.p2 B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
△ABC的頂點(diǎn)A(-5,0),B(5,0),△ABC的內(nèi)切圓圓心在直線x=3上,則頂點(diǎn)C的軌跡方程是( )
A.-=1
B.-=1
C.-=1(x>3)
D.-=1(x>4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知?jiǎng)訄A過(guò)定點(diǎn)A(0,2),且在x軸上截得的弦長(zhǎng)為4.
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)點(diǎn)P為軌跡C上任意一點(diǎn),直線l為軌跡C上在點(diǎn)P處的切線,直線l交直線:y=-1于點(diǎn)R,過(guò)點(diǎn)P作PQ⊥l交軌跡C于點(diǎn)Q,求△PQR的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:+=1(a>b>0),F(,0)為其右焦點(diǎn),過(guò)F且垂直于x軸的直線與橢圓相交所得的弦長(zhǎng)為2.則橢圓C的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
執(zhí)行如圖所示的程序框圖,若輸出k的值為6,則判斷框內(nèi)可填入的條件是( )
A.s> B.s>
C.s> D.s>
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)四組數(shù)據(jù)進(jìn)行統(tǒng)計(jì),獲得以下散點(diǎn)圖,關(guān)于其相關(guān)系數(shù)的比較,正確的是( )
A.r2<r4<0<r3<r1 B.r4<r2<0<r1<r3
C.r4<r2<0<r3<r1 D.r2<r4<0<r1<r3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com