已知a,b,c分別是銳角三角形ABC的三個內(nèi)角A,B,C的對邊,若2asinB=
3
b,則∠A=(  )
A、30°B、60°
C、45°D、75°
考點(diǎn):正弦定理
專題:解三角形
分析:已知等式利用正弦定理化簡,根據(jù)sinB不為0求出sinA的值,根據(jù)A為銳角即可確定出A的度數(shù).
解答: 解:將2asinB=
3
b,利用正弦定理化簡得:2sinAsinB=
3
sinB,
∵sinB≠0,∴sinA=
3
2
,
∵△ABC為銳角三角形,
∴A=60°.
故選:B.
點(diǎn)評:此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從6名學(xué)生中選3名分別擔(dān)任數(shù)學(xué)、物理、化學(xué)科代表,若甲、乙2人至少有一人入選,則不同的方法有(  )
A、40種B、60種
C、96種D、120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意的x∈[1,3],不等式3x-2≥m恒成立,則m的取值范圍是(  )
A、m≤1B、m≤7
C、m≥1D、m≥7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C的方程為x2+y2-2x-2y-2=0,則該圓的半徑,圓心坐標(biāo)分別為( 。
A、2,(-2,1)
B、4,(1,1)
C、2,(1,1)
D、
2
,(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線與x軸的夾角為60°,則此雙曲線的離心率為(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l的方向向量為(1,3),直線m⊥l,則直線m的斜率為( 。
A、
1
3
B、-
1
3
C、3
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題甲:x=2且y=3;命題乙:x+y=5,則甲是乙的( 。
A、充分非必要條件
B、必要非充分條件
C、充分必要條件
D、既不充分條件也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},滿足a2=5,a5=2,則公差d=( 。
A、-1
B、-
3
4
C、
3
4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
sin(2x+
π
6
).
(1)求f(x)的單調(diào)遞增區(qū)間及對稱中心.
(2)求f(x)>
1
4
的解.

查看答案和解析>>

同步練習(xí)冊答案