(12分)某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生
(I)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率pi(i=1,2,3);
(II)甲乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編程寫出程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄輸出y的值為i(i=1,2,3)的頻數(shù),以下是甲乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)圖(部分)

運(yùn)行次數(shù)n
輸出y的值為1的頻數(shù)
輸出y的值為2的頻數(shù)
輸出y的值為3的頻數(shù)
30
14
6
10




2100
1027
376
697
乙的頻數(shù)統(tǒng)計(jì)圖(部分)
運(yùn)行次數(shù)n
輸出y的值為1的頻數(shù)
輸出y的值為2的頻數(shù)
輸出y的值為3的頻數(shù)
30
12
11
7




2100
1051
696
353
當(dāng)n=2100時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合要求的可能系較大;
(III)將按程序擺圖正確編寫的程序運(yùn)行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

(I)輸出的y值為1的概率為,輸出的y值為2的概率為,輸出的y值為3的概率為
(II)乙同學(xué)所編程序符合算法要求的可能性較大(III)1

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)有甲、乙兩個(gè)靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒有命中得0分.該射手每次射擊的結(jié)果相互獨(dú)立.假設(shè)該射手完成以上三次射擊.
(I)求該射手恰好命中兩次的概率;
(II)求該射手的總得分的分布列及數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某經(jīng)銷商試銷A、B兩種商品一個(gè)月(30天)的記錄如下:

日銷售量(件)
0
1
2
3
4
5
商品A的頻數(shù)
3
5
7
7
5
3
商品B的頻數(shù)
4
4
6
8
5
3
若售出每種商品1件均獲利40元,用表示售出A、B商品的日利潤值(單位:元).將頻率視為概率.
(Ⅰ)設(shè)兩種商品的銷售量互不影響,求兩種商品日獲利值均超過100元的概率;
(Ⅱ)由于某種原因,該商家決定只選擇經(jīng)銷A、B商品的一種,你認(rèn)為應(yīng)選擇哪種商品,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是在豎直平面內(nèi)的一個(gè)“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點(diǎn)處相遇,若豎直線段有一條的為第一層,有二條的為第二層, ,依次類推.現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動,若在通道的分叉處,小彈子以相同的概率落入每個(gè)通道.記小彈子落入第層第個(gè)豎直通道(從左至右)的概率為,某研究性學(xué)習(xí)小組經(jīng)探究發(fā)現(xiàn)小彈子落入第層的第個(gè)通道的次數(shù)服從二項(xiàng)分布,請你解決下列問題.

(Ⅰ)試求的值,并猜想的表達(dá)式;(不必證明)
(Ⅱ)設(shè)小彈子落入第6層第個(gè)豎直通道得到分?jǐn)?shù)為,其中,試求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲乙丙三人商量周末去玩,甲提議去市中心逛街,乙提議去城郊覓秋,丙表示隨意。最終,商定以拋硬幣的方式?jīng)Q定結(jié)果。規(guī)則是:由丙拋擲硬幣若干次,若正面朝上則甲得一分乙得零分,反面朝上則乙得一分甲得零分,先得4分者獲勝,三人均執(zhí)行勝者的提議.記所需拋幣次數(shù)為.
⑴求=6的概率;
⑵求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

按照新課程的要求, 高中學(xué)生在每學(xué)期都要至少參加一次社會實(shí)踐活動(以下簡稱活動). 該校高2010級一班50名學(xué)生在上學(xué)期參加活動的次數(shù)統(tǒng)計(jì)如圖所示.
(I)求該班學(xué)生參加活動的人均次數(shù);(II)從該班中任意選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率
(III)從該班中任選兩名學(xué)生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

先后隨機(jī)投擲2枚正方體骰子,其中表示第枚骰子出現(xiàn)的點(diǎn)數(shù),表示第枚骰子出現(xiàn)的點(diǎn)數(shù). 
(Ⅰ)求點(diǎn)在直線上的概率;  
(Ⅱ)求點(diǎn)滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

每一個(gè)父母都希望自己的孩子能升上比較理想的中學(xué),于是就催生了“擇校熱”,這樣“擇校”的結(jié)果就導(dǎo)致了學(xué)生在路上耽誤的時(shí)間增加了.若某生由于種種原因,每天只能6:15騎車從家出發(fā)到學(xué)校,途經(jīng)5個(gè)路口,這5個(gè)路口將家到學(xué)校分成了6個(gè)路段,每個(gè)路段的騎車時(shí)間是10分鐘(通過路口的時(shí)間忽略不計(jì)),假定他在每個(gè)路口遇見紅燈的概率均為,且該生只在遇到紅燈或到達(dá)學(xué)校才停車.對每個(gè)路口遇見紅燈的情況統(tǒng)計(jì)如下:

紅燈
1
2
3
4
5
等待時(shí)間(秒)
60
60
90
30
90
(1)設(shè)學(xué)校規(guī)定7:20后(含7:20)到校即為遲到,求這名學(xué)生遲到的概率;
(2)設(shè)表示該學(xué)生第一次停車時(shí)已經(jīng)通過的路口數(shù),求它的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為
求:(1)乙至少擊中目標(biāo)2次的概率;
(2)乙恰好比甲多擊中目標(biāo)2次的概率

查看答案和解析>>

同步練習(xí)冊答案