12.命題“$?{x_0}∈R,{2^{x_0}}≤0$”的否定是( 。
A.不存在${x_0}∈R,{2^{x_0}}>0$B.?x∈R,2x>0
C.$?{x_0}∈R,{2^{x_0}}≥0$.D.?x∈R,2x≤0

分析 本題中所給的命題是一個(gè)特稱命題,其否定是一個(gè)全稱命題,按規(guī)則寫出其否定即可

解答 解:∵命題“$?{x_0}∈R,{2^{x_0}}≤0$”是一個(gè)特稱命題
∴命題“$?{x_0}∈R,{2^{x_0}}≤0$”的否定是“對(duì)任意的x∈R,2x>0”
故選:B

點(diǎn)評(píng) 本題考查命題的否定,正確解答本題,關(guān)鍵是掌握住命題的否定的定義及書寫規(guī)則,對(duì)于兩特殊命題特稱命題與全稱命題的否定,注意變換量詞

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如表:
與教育有關(guān)與教育無關(guān)合計(jì)
301040
35540
合計(jì)651580
(1)能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”?
參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635
(2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為X,求X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overline z$是z的共軛復(fù)數(shù),若$\overline z+z=2,(\overline z-z)i=2$(其中i為虛數(shù)單位),則z的值為( 。
A.1-iB.-1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)p:x<2,q:-2<x<2,則p是q成立的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.曲線y=xex在極值點(diǎn)處的切線方程是y=-$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,梯形A1B1C1D1是一平面圖形ABCD的直觀圖(斜二測(cè)),若AD∥Oy,AB∥CD,A1B1=$\frac{3}{4}{C_1}{D_1}=3,{A_1}{D_1}$=1,則原平面圖形ABCD的面積是( 。
A.14.B.7C.$14\sqrt{2}$D.$7\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在正三棱錐P-ABC中,點(diǎn)P,A,B,C都在球O的球面上,PA,PB,PC兩兩互相垂直,且球心O到底面ABC的距離為$\frac{\sqrt{3}}{3}$,則球O的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直角坐標(biāo)系xOy中,已知點(diǎn)A(1,0),函數(shù)f(x)=sin(2x-$\frac{π}{6}$)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)為B,則$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖是實(shí)現(xiàn)秦九韶算法的程序框圖,若輸入的x=2,n=2,依次輸入a=3,4,5,6,7,…,則輸出的s=( 。
A.3B.10C.25D.56

查看答案和解析>>

同步練習(xí)冊(cè)答案