【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為m為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)直線l與曲線C相交于MN兩點(diǎn),若,求的值.

【答案】1;(2

【解析】

1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果.

解:(1)曲線的參數(shù)方程為為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為,整理得,

根據(jù),轉(zhuǎn)換為極坐標(biāo)方程為

(包含),

所以曲線C的極坐標(biāo)方程為

(2)直線的參數(shù)方程為轉(zhuǎn)換為直線的標(biāo)準(zhǔn)參數(shù)式為為參數(shù))

代入圓的直角坐標(biāo)方程為

,設(shè)方程兩根為,

所以,,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)點(diǎn)在橢圓上,過點(diǎn)軸的垂線,垂足為,點(diǎn)滿足,已知點(diǎn)的軌跡是過點(diǎn)的圓.

1)求橢圓的方程;

2)設(shè)直線與橢圓交于,兩點(diǎn)(,軸的同側(cè)),為橢圓的左、右焦點(diǎn),若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜率為的直線交拋物線兩點(diǎn),已知點(diǎn)的橫坐標(biāo)比點(diǎn)的橫坐標(biāo)大4,直線交線段于點(diǎn),交拋物線于點(diǎn)

1)若點(diǎn)的橫坐標(biāo)等于0,求的值;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)求的極坐標(biāo)方程;

(Ⅱ)射線與圓C的交點(diǎn)為與直線的交點(diǎn)為,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列兩個(gè)命題,命題甲:平面α與平面β相交;命題乙:相交直線l,m都在平面α內(nèi),并且都不在平面β內(nèi),直線lm中至少有一條與平面β相交.則甲是乙的(  。

A.充分且必要條件B.充分而不必要條件

C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正數(shù),其前n項(xiàng)的積為,記.

1)若數(shù)列為等比數(shù)列,數(shù)列為等差數(shù)列,求數(shù)列的公比.

2)若,,且

①求數(shù)列的通項(xiàng)公式.

②記,那么數(shù)列中是否存在兩項(xiàng),(s,t均為正偶數(shù),且),使得數(shù)列,,,成等差數(shù)列?若存在,求s,t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了提升學(xué)生數(shù)學(xué)建模的核心素養(yǎng),某校數(shù)學(xué)興趣活動(dòng)小組指導(dǎo)老師給學(xué)生布置了一項(xiàng)探究任務(wù):如圖,有一張邊長(zhǎng)為27cm的等邊三角形紙片ABC,從中裁出等邊三角形紙片作為底面,從剩余梯形中裁出三個(gè)全等的矩形作為側(cè)面,圍成一個(gè)無蓋的三棱柱(不計(jì)損耗).

1)若三棱柱的側(cè)面積等于底面積,求此三棱柱的底面邊長(zhǎng);

2)當(dāng)三棱柱的底面邊長(zhǎng)為何值時(shí),三棱柱的體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及,手機(jī)計(jì)步軟件迅速流行開來,這類軟件能自動(dòng)記載每個(gè)人每日健步的步數(shù),從而為科學(xué)健身提供一定的幫助.某市工會(huì)為了解該市市民每日健步走的情況,從本市市民中隨機(jī)抽取了2000名市民(其中不超過40歲的市民恰好有1000名),利用手機(jī)計(jì)步軟件統(tǒng)計(jì)了他們某天健步的步數(shù),并將樣本數(shù)據(jù)分為,,,,,,九組(單位:千步),將抽取的不超過40歲的市民的樣本數(shù)據(jù)繪制成頻率分布直方圖如右,將40歲以上的市民的樣本數(shù)據(jù)繪制成頻數(shù)分布表如下,并利用該樣本的頻率分布估計(jì)總體的概率分布.

分組

(單位:千步)

頻數(shù)

10

20

20

30

400

200

200

100

20

1)現(xiàn)規(guī)定,日健步步數(shù)不低于13000步的為“健步達(dá)人”,填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有%的把握認(rèn)為是否為“健步達(dá)人”與年齡有關(guān);

健步達(dá)人

非健步達(dá)人

總計(jì)

40歲以上的市民

不超過40歲的市民

總計(jì)

2)(。├脴颖酒骄鶖(shù)和中位數(shù)估計(jì)該市不超過40歲的市民日健步步數(shù)(單位:千步)的平均數(shù)和中位數(shù);

(ⅱ)由頻率分布直方圖可以認(rèn)為,不超過40歲的市民日健步步數(shù)(單位:千步)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值),的值已求出約為.現(xiàn)從該市不超過40歲的市民中隨機(jī)抽取5人,記其中日健步步數(shù)位于的人數(shù)為,求的數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,是以為斜邊的等腰直角三角形,的中點(diǎn),的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案