【題目】如圖,垂直圓O所在的平面,是圓O的一條直徑,C為圓周上異于AB的動(dòng)點(diǎn),D為弦的中點(diǎn),.

1)證明:平面平面;

2)若,求平面與平面所成銳二面角的余弦值.

【答案】1)見解析(2

【解析】

1)根據(jù)垂直圓O所在的平面,有,易證.由線面垂直的判定定理得到平面,然后由面面垂直的判定定理證明.

2)建立空間直角坐標(biāo)系,分別求得平面,平面的一個(gè)法向量,代入二面角的向量公式求解.

1)證明:因?yàn)?/span>垂直圓O所在的平面,所以,

因?yàn)?/span>D為弦的中點(diǎn),O為圓O的圓心,所以.

因?yàn)?/span>,所以平面,

平面,所以平面平面.

2)如圖所示:

O為原點(diǎn),建立空間直角坐標(biāo)系.

從而

設(shè)平面的法向量為,

,即

,得.

由(1)可得平面的一個(gè)法向量為

則平面與平面所成銳二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年全國掀起了垃圾分類的熱潮,垃圾分類已經(jīng)成為新時(shí)尚,同時(shí)帶動(dòng)了垃圾桶的銷售.某垃圾桶生產(chǎn)和銷售公司通過數(shù)據(jù)分析,得到如下規(guī)律:每月生產(chǎn)只垃圾桶的總成本由固定成本和生產(chǎn)成本組成,其中固定成本為100萬元,生產(chǎn)成本為.

1)寫出平均每只垃圾桶所需成本關(guān)于的函數(shù)解析式,并求該公司每月生產(chǎn)多少只垃圾桶時(shí),可使得平均每只所需成本費(fèi)用最少?

2)假設(shè)該類型垃圾桶產(chǎn)銷平衡(即生產(chǎn)的垃圾桶都能賣掉),每只垃圾桶的售價(jià)為元,滿足.若當(dāng)產(chǎn)量為15000只時(shí)利潤最大,此時(shí)每只售價(jià)為300元,試求的值.(利潤銷售收入成本費(fèi)用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)。

1)求函數(shù)的單調(diào)減區(qū)間;

2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x+22cosx

1)求函數(shù)fx)在[]上的最值:

2)若存在x∈(0,)使不等式fxax成立,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ)寫出曲線C的直角坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)P(0,1)且互相垂直的兩條直線分別與圓O:交于點(diǎn)A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點(diǎn)C,D.

(1)若AB=,求CD的長;

(2)若CD中點(diǎn)為E,求△ABE面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校進(jìn)行了一次創(chuàng)新作文大賽,共有100名同學(xué)參賽,經(jīng)過評判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結(jié)論錯(cuò)誤的是( )

A.得分在之間的共有40人

B.從這100名參賽者中隨機(jī)選取1人,其得分在的概率為0.5

C.估計(jì)得分的眾數(shù)為55

D.這100名參賽者得分的中位數(shù)為65

查看答案和解析>>

同步練習(xí)冊答案