【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥底面ABCD,AB⊥AC,AB=1,BC=2,PA= ,E為BC的中點(diǎn).
(1)證明:PE⊥ED;
(2)求二面角E﹣PD﹣A的大。

【答案】
(1)證明:如圖,

在△ABC中,∵AB=1,BC=2,AB⊥AC,

∴cosB= , B=60°,又E為BC的中點(diǎn),

∴△ABE為正三角形,則AE=1,

在△AED中,∵AE=1,AD=2,∠EAD=60°,

,

∴AE2+ED2=AD2,則AE⊥ED.

又PA⊥平面ABCD,∴PA⊥ED,

∵PA∩AE=A,∴ED⊥平面PAE,則PE⊥ED;


(2)解:∵PA⊥平面ABCD,∴平面PAD⊥平面ABCD,

過(guò)E作EG⊥AD,垂足為G,則EG⊥平面PAD,∴EG⊥PD,

過(guò)G作GH⊥PD,垂足為H,連接EH,

∴PD⊥平面EGH,則PD⊥EH.

則∠EHG為二面角E﹣PD﹣A的平面角.

在Rt△AED中,由AE=1,AD=2,ED= ,可得EG= ,

∴GD= ,

由△PAD∽△GHD,可得 ,即GH= =

∴tan ,即∠EHG=60°.

∴二面角E﹣PD﹣A的大小為60°


【解析】(1)在△ABC中,由題意可得△ABE為正三角形,則AE=1,在△AED中,求解三角形可得AE⊥ED.然后利用線(xiàn)面垂直的判定可得ED⊥平面PAE,從而得到PE⊥ED;(2)由PA⊥平面ABCD,得平面PAD⊥平面ABCD,然后找出二面角E﹣PD﹣A的平面角.求解三角形可得二面角E﹣PD﹣A的大。
【考點(diǎn)精析】通過(guò)靈活運(yùn)用空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系,掌握相交直線(xiàn):同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線(xiàn):同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線(xiàn): 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某離散型隨機(jī)變量X服從的分布列如圖,則隨機(jī)變量X的方差D(X)等于

X

0

1

p

m

2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處有極值10.

1)求實(shí)數(shù)的值;

2)設(shè),討論函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)函數(shù)中,在(0,1)上為增函數(shù)的是(
A.y=﹣log2x
B.y=sinx
C.
D.y=arccosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的最高點(diǎn)D的坐標(biāo)( ,2),由D點(diǎn)運(yùn)動(dòng)到相鄰最低點(diǎn)時(shí)函數(shù)曲線(xiàn)與x軸的交點(diǎn)( ,0)
(1)求f(x)的解析式
(2)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于x的不等式:(ax﹣1)(x﹣1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間[ ,2]上,函數(shù)f(x)=x2+px+q與g(x)=2x+ 在同一點(diǎn)取得相同的最小值,那么f(x)在[ ,2]上的最大值是(
A.
B.
C.8
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),下列結(jié)論中不正確的是( )

A. 的圖象關(guān)于點(diǎn)中心對(duì)稱(chēng)

B. 的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)

C. 的最大值為

D. 既是奇函數(shù),又是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖,其中成績(jī)分組區(qū)間如下:

組號(hào)

第一組

第二組

第三組

第四組

第五組

分組

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;
(Ⅲ)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

同步練習(xí)冊(cè)答案