【題目】在平面直角坐標系中,曲線C的參數方程為:(為參數).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為.
(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程;
(Ⅱ)設點P的直角坐標為,若直線l與曲線C分別相交于A,B兩點,求的值.
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足acosB+bcosA=2ccosC.
(1)求角C的大;
(2)若△ABC的周長為3,求△ABC的內切圓面積S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB//CD,∠ABC=,BC=CD=CE=1,EC⊥平面ABCD,EFAC,P是線段EF上的動點
(1)求證:平面BCE⊥平面ACEF;
(2)求平面PAB與平面BCE所成銳二面角的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+x2,g(x)=xlna,a>1.
(1)求證:函數F(x)=f(x)-g(x)在(0,+∞)上單調遞增;
(2)若函數y=-3有四個零點,求b的取值范圍;
(3)若對于任意的x1,x2∈[-1,1]時,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市推行“共享汽車”服務,租用汽車按行駛里程加用車時間收費,標準是“1元/公里+0.2元/分鐘”,剛在該市參加工作的小劉擬租用“共享汽車“上下班.單位同事老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾上下班總共也需要用時大約1小時”,并將自己近50天往返開車的花費時間情況統(tǒng)計如下
時間(分鐘) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
次數ξ | 8 | 18 | 14 | 8 | 2 |
將老李統(tǒng)計的各時間段頻率視為相應概率,假定往返的路況不變,而且每次路上開車花費時間視為用車時間.
(1)試估計小劉每天平均支付的租車費用(每個時間段以中點時間計算);
(2)小劉認為只要上下班開車總用時不超過45分鐘,租用“共享汽車”為他該日的“最優(yōu)選擇”,小劉擬租用該車上下班2天,設其中有ξ天為“最優(yōu)選擇”,求ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數在區(qū)間上, , , , , , 均可為一個三角形的三邊長,則稱函數為“三角形函數”.已知函數在區(qū)間上是“三角形函數”,則實數的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中,為自然對數的底數.
(Ⅰ)設是函數的導函數,求函數在區(qū)間上的最小值;
(Ⅱ)若,函數在區(qū)間內有零點,求的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,直線的方程為2ρcosθ+5ρsinθ﹣8=0,曲線E的方程為ρ=4cosθ.
(1)以極點O為直角坐標原點,極軸為x軸正半軸建立平面直角坐標系,分別寫出直線l與曲線E的直角坐標方程;
(2)設直線l與曲線E交于A,B兩點,點C在曲線E上,求△ABC面積的最大值,并求此時點C的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元前世紀的畢達哥拉斯是最早研究“完全數”的人.完全數是一種特殊的自然數,它所有的真因子(即除了自身以外的約數)的和恰好等于它本身.若從集合中隨機抽取兩個數,則這兩個數中有完全數的概率是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com