【題目】已知橢圓的焦點在軸上,中心在坐標(biāo)原點,拋物線的焦點在軸上,頂點在坐標(biāo)原點,在上各取兩個點,將其坐標(biāo)記錄于表格中:

1)求的標(biāo)準方程;

2)已知定點為拋物線上的一動點,過點作拋物線的切線交橢圓、兩點,求面積的最大值.

【答案】1,;(2.

【解析】

1)設(shè)橢圓,根據(jù)題意可知點在橢圓上,可得出,進一步得知點在橢圓上,可求得的值,可求出橢圓的方程,從而可得出拋物線上的點的坐標(biāo),進而可求得拋物線的標(biāo)準方程;

2)設(shè)點,利用導(dǎo)數(shù)可求得切線的方程,設(shè)點,將直線的方程與橢圓方程聯(lián)立,列出韋達定理,利用弦長公式求得,求出點到直線的距離,然后利用三角形的面積公式可得出面積關(guān)于的表達式,利用二次函數(shù)的基本性質(zhì)可求得面積的最大值.

1)設(shè),由題意知點一定在橢圓上,則,得

所以,橢圓上的點的橫坐標(biāo)的取值范圍是

則點也在橢圓上,將該點的坐標(biāo)代入橢圓方程得,,解得

所以,橢圓的標(biāo)準方程為

設(shè)拋物線,依題意知點在拋物線上,代入拋物線的方程,得,

所以,拋物線的標(biāo)準方程為;

2)設(shè)、

,故直線的方程為,即,

代入橢圓的方程整理得,

,

由韋達定理得,,

,

設(shè)點到直線的距離為,則,

,

當(dāng)時取到等號,此時滿足

綜上所述,面積的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且曲線處的切線斜率為1

1)求實數(shù)的值;

2)證明:當(dāng)時,;

3)若數(shù)列滿足,且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、“90從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中正確的是(

注:“901990年及以后出生的人,“801980-1989年之間出生的人,“801979年及以前出生的人.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中“90占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)“90“80

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)“90“80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)存在三個不同的零點時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點分別為,離心率為,過焦點且垂直于軸的直線被橢圓截得的線段長為

(Ⅰ)求橢圓的方程;

(Ⅱ)點為橢圓上一動點,連接、,設(shè)的角平分線交橢圓的長軸于點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)只能同時滿足下列三個條件中的兩個:函數(shù)的最大值為2函數(shù)的圖象可由的圖象平移得到;函數(shù)圖象的相鄰兩條對稱軸之間的距離為.

1)請寫出這兩個條件序號,并求出的解析式;

2)求方程在區(qū)間上所有解的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是:是參數(shù)).以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

1)若直線與曲線相交于兩點,且,試求實數(shù)值;

2)設(shè)為曲線上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為2,分別為線段的中點,在五棱錐中,為棱的中點,平面與棱分別交于點

(1)求證:;

(2)若底面,且,求直線與平面所成角的大。

查看答案和解析>>

同步練習(xí)冊答案