【題目】已知拋物線(xiàn)的焦點(diǎn)為,直線(xiàn)與拋物線(xiàn)交于兩點(diǎn).

(Ⅰ)若直線(xiàn)過(guò)焦點(diǎn),且與圓交于(其中軸同側(cè)),求證: 是定值;

(Ⅱ)設(shè)拋物線(xiàn)點(diǎn)的切線(xiàn)交于點(diǎn),試問(wèn): 軸上是否存在點(diǎn),使得為菱形?若存在,請(qǐng)說(shuō)明理由并求此時(shí)直線(xiàn)的斜率和點(diǎn)的坐標(biāo).

【答案】(Ⅰ)1.(Ⅱ)

【解析】試題分析:

(1)聯(lián)立直線(xiàn)與拋物線(xiàn)的方程整理可得是定值1.

(2)由題意可得當(dāng)直線(xiàn)的斜率為0,且時(shí)為菱形,此時(shí).

試題解析:

解:拋物線(xiàn)的焦點(diǎn)

設(shè),聯(lián)立

,且,

(Ⅰ)若直線(xiàn)過(guò)焦點(diǎn),則,則,

由條件可知圓圓心為,半徑為1,

由拋物線(xiàn)的定義有,則, ,

(或)

為定值,定值為1.

(Ⅱ)當(dāng)直線(xiàn)的斜率為0,且時(shí)為菱形.理由如下:

,則,

則拋物線(xiàn)處的切線(xiàn)為

……①

同理拋物線(xiàn)處的切線(xiàn)為……②

聯(lián)立①②解得,代入①式解得,即

,所以,

的中點(diǎn)為

則有軸.若為菱形,則,所以,

此時(shí) ,則

方法二:設(shè), ,由,則,

為菱形,則,則,

,

, ,

則拋物線(xiàn)處的切線(xiàn)為,即……①

同理拋物線(xiàn)處的切線(xiàn)為……②

聯(lián)立①②

的中點(diǎn)為,所以

方法三:設(shè), ,由,則,

為菱形,則

,即,

,

此時(shí)直線(xiàn) ,則

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若 (tanx+sinx)﹣ |tanx﹣sinx|﹣k≥0在x∈[ , π]恒成立,則k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】渝州集團(tuán)對(duì)所有員工進(jìn)行了職業(yè)技能測(cè)試從甲、乙兩部門(mén)中各任選10名員工的測(cè)試成績(jī)(單位:分)數(shù)據(jù)的莖葉圖如圖所示.

(1)若公司決定測(cè)試成績(jī)高于85分的員工獲得“職業(yè)技能好能手”稱(chēng)號(hào),求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;

(2)公司結(jié)合這次測(cè)試成績(jī)對(duì)員工的績(jī)效獎(jiǎng)金進(jìn)行調(diào)整(績(jī)效獎(jiǎng)金方案如下表),若以甲部門(mén)這10人的樣本數(shù)據(jù)來(lái)估計(jì)該部門(mén)總體數(shù)據(jù),且以頻率估計(jì)概率,從甲部門(mén)所有員工中任選3名員工,記績(jī)效獎(jiǎng)金不小于的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】10名同學(xué)參加投籃比賽,每人投20球,投中的次數(shù)用莖葉圖表示(如圖),設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有(

A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)教師對(duì)所任教的兩個(gè)班級(jí)各抽取20名學(xué)生進(jìn)行測(cè)試,分?jǐn)?shù)分布如表:

分?jǐn)?shù)區(qū)間

甲班頻率

乙班頻率

[0,30)

0.1

0.2

[30,60)

0.2

0.2

[60,90)

0.3

0.3

[90,120)

0.2

0.2

[120,150)

0.2

0.1

(Ⅰ)若成績(jī)120分以上(含120分)為優(yōu)秀,求從乙班參加測(cè)試的90分以上(含90分)的同學(xué)中,隨機(jī)任取2名同學(xué),恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:在犯錯(cuò)概率小于0.1的前提下,你是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)是否優(yōu)秀與班級(jí)有關(guān)系?

優(yōu)秀

不優(yōu)秀

總計(jì)

甲班

乙班

總計(jì)

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某印刷廠(chǎng)為了研究印刷單冊(cè)書(shū)籍的成本y(單位:元)與印刷冊(cè)數(shù)x(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個(gè)回歸方程,甲:

為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

(1)(。┩瓿上卤恚ㄓ(jì)算結(jié)果精確到0.1):

)分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較,的大小,判斷哪個(gè)模型擬合效果更好.

(2)該書(shū)上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠(chǎng)決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率為0.8)或10千冊(cè)(概率為0.2),若印刷廠(chǎng)以沒(méi)測(cè)5元的價(jià)格將書(shū)籍出售給訂貨商,問(wèn)印刷廠(chǎng)二次印刷8千冊(cè)還是10千冊(cè)恒獲得更多的利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線(xiàn)與曲線(xiàn)的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=log (x2﹣ax+3)在(﹣∞,1)上單調(diào)遞增,則a的范圍是(
A.(2,+∞)
B.[2,+∞)
C.[2,4]
D.[2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)y=f(x),如果存在區(qū)間[m,n],同時(shí)滿(mǎn)足下列條件:
1)f(x)在[m,n]上是單調(diào)的;
2)當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n],則稱(chēng)[m,n]是該函數(shù)的“和諧區(qū)間”.若函數(shù)f(x)= (a>0)存在“和諧區(qū)間”,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案