已知函數(shù)f(x)=x(x-a)2,a是大于零的常數(shù).
(1)當(dāng)a=1時(shí),求f(x)的極值;
(2)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)證明:曲線y=f(x)上存在一點(diǎn)P,使得曲線y=f(x)上總有兩點(diǎn)M、N且
MP
=
PN
成立,并寫出點(diǎn)P的坐標(biāo).
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求函數(shù)的極值,先對(duì)原函數(shù)求導(dǎo),根據(jù)導(dǎo)函數(shù)的符號(hào),判出原函數(shù)的單調(diào)區(qū)間,從而找出極值點(diǎn);
(2)根據(jù)函數(shù)的增減性來求字母系數(shù)的取值范圍,可根據(jù)函數(shù)在某區(qū)間內(nèi)的增減情況,推出其導(dǎo)函數(shù)在區(qū)間內(nèi)的符號(hào),是問題轉(zhuǎn)化為二次不等式恒成立問題,進(jìn)一步借助于二次函數(shù)圖象和二次不等式的關(guān)系來分析;
(3)曲線上存在一點(diǎn)P,可猜想P點(diǎn)很可能是一個(gè)特殊點(diǎn),在求解(1)時(shí)涉及到兩個(gè)極值點(diǎn),因向量方向問題,兩極值點(diǎn)不可能是P,所以可嘗試兩極值點(diǎn)的中點(diǎn)作為P點(diǎn).
解答: 解:(1)f(x)=x(x-a)2=x3-2ax2+a2x,則f′(x)=3x2-4ax+a2,
當(dāng)a=1時(shí),f′(x)=3x2-4x+1=(3x-1)(x-1),
令f′(x)=0,得x=
1
3
或1,f(x)在區(qū)間(0,
1
3
),(
1
3
,1),(1,+∞)上分別單調(diào)遞增,單調(diào)遞減,單調(diào)遞增,
于是當(dāng)x=
1
3
時(shí),有極大值f(
1
3
)=
4
27

當(dāng)x=1時(shí)有極小值f(1)=0.
(Ⅱ)f'(x)=3x2-4ax+a2,若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)遞增,
則f′(x)=3x2-4ax+a2≥0在x∈[1,2]上恒成立,
當(dāng)0<
2a
3
<1時(shí),即a<
3
2
時(shí),由f′(1)=3-4a+a2≥0得0<a≤1;
當(dāng)1≤
2a
3
≤2,即
3
2
≤a≤3
時(shí),f′(
2a
3
)=-
a2
3
≥0,無解;
當(dāng)
2a
3
>2,即a>3時(shí),由 f′(2)=12-8a+a2≥0得a≥6.
綜上,當(dāng)函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)遞增時(shí),0<a≤1或a≥6.
(Ⅲ)f(x)=x(x-a)2=x3-2ax2+a2x,f′(x)=3x2-4ax+a2,
令f'(x)=0,得x1=
a
3
,x2=a,
f(x)在區(qū)間(-∞,
a
3
),(
a
3
,a),(a,+∞)上分別單調(diào)遞增,單調(diào)遞減,單調(diào)遞增,
于是當(dāng)x=
a
3
時(shí),有極大值f(
a
3
)=
4a3
27
;
當(dāng)x=a時(shí),有極小值f(a)=0.
記A(
a
3
,
4a3
27
),B(a,0),AB的中點(diǎn)P(
2a
3
,
2a3
27
),
設(shè)M(x,y)是圖象任意一點(diǎn),由
MP
=
PN
,得N(
4
3
a-x,
4
27
a3-y
),
因?yàn)閒(
4
3
a-x)=
4
27
a3-y,
由此可知點(diǎn)N在曲線y=f(x)上,即滿足
MP
=
PN
的點(diǎn)N在曲線C上.
所以曲線y=f(x)上存在一點(diǎn)P(
2a
3
2a3
27
),使得曲線y=f(x)上總有兩點(diǎn)M,N,且
MP
=
PN
成立.
點(diǎn)評(píng):涉及二次以上函數(shù)的極值問題,求導(dǎo)是必選途徑;存在性問題的求證,往往需要大膽的猜想和假設(shè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x|x=
k
2
+
1
4
,k∈A},集合N={x|x=
k
4
+
1
2
,k∈z},則(  )?
A、M=NB、M≠N
C、M≠ND、M?N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(tan2012°,cos2012°)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x|<2},B={x|
1
2
<2x<8},則A∩B=(  )
A、{x|-1<x<2}
B、{x|-1<x<3}
C、{x|-2<x<3}
D、{x|-2<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)(x∈R)的圖象如圖所示,則函數(shù)g(x)=logaf(x)(0<a<1)的減區(qū)間是( 。
A、(0,
1
2
B、(-∞,0)∪[
1
2
,+∞)
C、[
a
,1]
D、[
a
,
a+1
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,E是PB的中點(diǎn),PD=AD.
(1)求證:平面PAC⊥平面PBD;
(2)求證:PC⊥平面ADE;
(3)求二面角A-ED-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐E-ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC=1,AB=2,F(xiàn)為CE的中點(diǎn),
(Ⅰ)求證:AE∥平面BDF;
(Ⅱ)求證:平面BDF⊥平面ACE;
(Ⅲ)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|2x>1},B={y|y=-x2+2x-2,x∈R}
(1)求集合A,B,(∁RB)∪A;
(2)若集合C={x|2x+a<0},且滿足B∪C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+e,則f′(1)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案