【題目】母線長為,底面半徑為的圓錐內(nèi)有一球,與圓錐的側面、底面都相切,現(xiàn)放入一些小球,小球與圓錐底面、側面、球都相切,這樣的小球最多可放入__________個.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,定義為兩點、
的“切比雪夫距離”,又設點及上任意一點,稱的最小值為點到
直線的“切比雪夫距離”,記作,給出下列三個命題:
① 對任意三點、、,都有;
② 已知點和直線,則;
③ 定點、,動點滿足(),
則點的軌跡與直線(為常數(shù))有且僅有2個公共點;
其中真命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C過點,且與圓外切于點,過點作圓C的兩條切線PM,PN,切點為M,N.
(1)求圓C的標準方程;
(2)試問直線MN是否恒過定點?若過定點,請求出定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, , , .給出以下三個命題:
①分別過點, ,作的不同于軸的切線,兩切線相交于點,則點的軌跡為橢圓的一部分;
②若, 相切于點,則點的軌跡恒在定圓上;
③若, 相離,且,則與, 都外切的圓的圓心在定橢圓上.
則以上命題正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的左、右頂點分別為,直線與雙曲線交于,直線交直線于點.
(1)求點的軌跡方程;
(2)若點的軌跡與矩形的四條邊都相切,探究矩形對角線長是否為定值,若是,求出此值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,下有七張卡片,現(xiàn)這樣組成一個三位數(shù):甲從這七張卡片中隨機抽出一張,把卡片上的數(shù)字寫在百位,然后把卡片放回;乙再從這七張卡片中隨機抽出一張,把卡片上的數(shù)字寫在十位,然后把卡片放回;丙又從這七張卡片中隨機抽出一張,把卡片上的數(shù)字寫在個位,然后把卡片放回。則這樣組成的三位數(shù)的個數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式。某機構為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
(1)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大。ú灰笥嬎愠鼍唧w值,給出結論即可);
(2)若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認為城市擁堵與認可共享單車有關;
A | B | 合計 | |
認可 | |||
不認可 | |||
合計 |
(3)在A,B城市對此種交通方式“認可”的用戶中按照分層抽樣的方法抽取6人,若在此6人中推薦2人參加“單車維護”志愿活動,求A城市中至少有1人的概率。
參考數(shù)據(jù)如下:(下面臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某種植物每日平均增長高度(單位:)與每日光照時間(單位:)之間的關系有如下一組數(shù)據(jù):
(單位: ) | 6 | 7 | 8 | 9 | 10 |
(單位: ) | 3.5 | 5.2 | 7 | 8.6 | 10.7 |
(1)求關于的回歸直線方程;
(2)計算相關指數(shù)的值,并說明回歸模型擬合程度的好壞;
(3)若某天光照時間為8.5小時, 預測該天這種植物的平均增長高度(結果精確到0.1)
參考公式及數(shù)據(jù):,,, ,,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com