分析 利用條件,求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),歸納猜想一般性結(jié)論,利用指數(shù)的性質(zhì)給出證明.
解答 解:f(0)+f(1)=$\frac{1}{2}$,
同理可得:f(-1)+f(2)=$\frac{1}{2}$,f(-2)+f(3)=$\frac{1}{2}$.
一般性結(jié)論:$f(x)+f(1-x)=\frac{1}{2}$或?qū)懗伞叭魓1+x2=1,則f(x1)+f(x2)=$\frac{1}{2}$.”
證明:$f(x)+f(1-x)=\frac{1}{{{4^x}+2}}+\frac{1}{{{4^{1-x}}+2}}=\frac{1}{{{4^x}+2}}+\frac{4^x}{{{4^x}({4^{1-x}}+2)}}$=$\frac{1}{{{4^x}+2}}+\frac{4^x}{{{4^{\;}}+2×{4^x}}}=\frac{1}{{{4^x}+2}}+\frac{4^x}{{2(2+{4^x})}}$=$\frac{{2+{4^x}}}{{2(2+{4^x})}}=\frac{1}{2}$,
點評 本題考查歸納推理,考查學(xué)生分析解決問題的能力,正確歸納猜想是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(0,2) | B. | (-∞,-2)∪(2,+∞) | C. | (-2,0)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
職務(wù) 性別 | 擔(dān)任學(xué)生干部 | 未擔(dān)任學(xué)生干部 | 總計 |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計 | 30 |
P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com