【題目】在四棱錐中,平面,四邊形是矩形,,,分別是棱,,的中點.

(1)求證:平面;

(2)若,,求點到平面的距離.

【答案】(1)證明見解析;(2)

【解析】

1)連接,證明平面平面,即可說明平面;

2)先計算出,再利用等體積法,即可求出點到平面的距離.

(1)證明:連接,∵在矩形中,,分別是,中點,

,,∴四邊形是平行四邊形,∴.

的中點,∴.

平面,平面

平面,平面.

,∴平面平面.

平面,∴平面.

(2)解:法一:∵平面,,∴平面.

在平面內(nèi),作,垂足為,則.

,∴平面,∴長是點到平面的距離.

在矩形中,中點,,.

.

,,∴,

即點到平面的距離為.

法二:設(shè)到平面的距離為,

在矩形中,,,∴.

平面平面,∴,

,∴,,

的面積為.

的面積為,

,∴,即點到平面的距離為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某媒體對“男女延遲退休″這一公眾關(guān)注的問題進行名意調(diào)查,如表是在某單位得到的數(shù)據(jù):

贊同

反對

合計

50

150

200

30

170

200

合計

80

320

400

(I)能否有97.5%的把握認為對這一問題的看法與性別有關(guān)?

(II)從贊同男女延遲退休的80人中,利用分層抽樣的方法抽出8人,然后從中選出3人進行陳述發(fā)言,設(shè)發(fā)言的女士人數(shù)為X,求X的分布列和期望.

參考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如下圖所示.令g(x)=af(x)+b,則下列關(guān)于函數(shù)g(x)的結(jié)論:

①若a<0,則函數(shù)g(x)的圖象關(guān)于原點對稱;

②若a=-1,-2<b<0,則方程g(x)=0有大于2的實根;

③若a0,b=2,則方程g(x)=0有兩個實根;

④若a0,b=2,則方程g(x)=0有三個實根.

其中,正確的結(jié)論為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=pn+q(p≠0且p≠1),求證:數(shù)列{an}為等比數(shù)列的充要條件為q=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查民眾對國家實行新農(nóng)村建設(shè)政策的態(tài)度,現(xiàn)通過網(wǎng)絡(luò)問卷隨機調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持新農(nóng)村建設(shè)人數(shù)如下表:

年齡

頻數(shù)

10

20

30

20

10

10

支持新農(nóng)村建設(shè)

3

11

26

12

6

2

1)根據(jù)上述統(tǒng)計數(shù)據(jù)填下面的列聯(lián)表,并判斷是否有的把握認為以50歲為分界點對新農(nóng)村建設(shè)政策的支持度有差異;

年齡低于50歲的人數(shù)

年齡不低于50歲的人數(shù)

合計

支持

不支持

合計

2)為了進一步推動新農(nóng)村建設(shè)政策的實施,中央電視臺某節(jié)目對此進行了專題報道,并在節(jié)目最后利用隨機撥號的形式在全國范圍內(nèi)選出4名幸運觀眾(假設(shè)年齡均在20周歲至80周歲內(nèi)),給予適當?shù)莫剟?/span>.若以頻率估計概率,記選出4名幸運觀眾中支持新農(nóng)村建設(shè)人數(shù)為,試求隨機變量的分布列和數(shù)學期望.

參考數(shù)據(jù):

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)當時,求不等式的解集;

2)若時,不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設(shè)點,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=alnx3xx處取得極值.

1)若對任意x∈(0,+∞),fxm恒成立,求實數(shù)m的取值范圍;

2)討論函數(shù)Fx)=fx+x2+kkR)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班級有3名同學報名參加學校組織的辯論賽,現(xiàn)有甲、乙兩個辨題可以選擇,學校決定讓選手以抽取卡片(除上面標的數(shù)不同外其他完全相同)的方式選擇辯題,且每名選手抽取后放回.已知共有10張卡片,卡片上分別標有10個數(shù).若抽到卡片上的數(shù)為質(zhì)數(shù)(23,5,7),則選擇甲辨題,否則選擇乙辯題.

1)求這3名同學中至少有1人選擇甲辨題的概率.

2)用X、Y分別表示這3名同學中選擇甲、乙辨題的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案