分析 (1)求得f(x)的對(duì)稱軸方程,可得f(x)在[0,1]遞減,即可得到最值,解方程可得a,b的值;
(2)由題意可得$m≤x-4+\frac{1}{x}$在x∈(0,+∞)上恒成立,運(yùn)用對(duì)號(hào)函數(shù)的單調(diào)性,可得右邊函數(shù)的最小值,即可得到m的范圍.
解答 解:(1)函數(shù)f(x)=ax2-4ax+b(a>0)=a(x-2)2+b-4a,
∵a>0,開口向上,對(duì)稱軸x=2,
∴f(x)在[0,1]遞減,
∴f(0)=b=1,f(1)=b-3a=-2,
∴a=b=1;
(2)∵f(x)=x2-4x+1≥mx在x∈(0,+∞)上恒成立,
∴$m≤x-4+\frac{1}{x}$在x∈(0,+∞)上恒成立,
∵雙勾函數(shù)y=x+$\frac{1}{x}$在(0,1]遞減,在[1,+∞)遞增,
∴當(dāng)x=1時(shí),x-4+$\frac{1}{x}$取得最小值,且為2-4=-2,
則m≤-2.
點(diǎn)評(píng) 本題考查二次函數(shù)的最值的求法,注意討論對(duì)稱軸和區(qū)間的關(guān)系,考查不等式恒成立問題的解法,注意運(yùn)用參數(shù)分離和對(duì)號(hào)函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1] | B. | (-∞,1) | C. | [1,3) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}+\overrightarrow{PA}+\overrightarrow{BQ}$ | B. | $\overrightarrow{AB}+\overrightarrow{PC}+\overrightarrow{BA}-\overrightarrow{QC}$ | C. | $\overrightarrow{QC}+\overrightarrow{CQ}-\overrightarrow{QP}$ | D. | $\overrightarrow{PA}+\overrightarrow{AB}-\overrightarrow{BQ}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | -4 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 63 | B. | 45 | C. | 36 | D. | 27 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com