【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),曲線的上點(diǎn) 對應(yīng)的參數(shù),將曲線經(jīng)過伸縮變換后得到曲線,直線的參數(shù)方程為

(1)說明曲線是哪種曲線,并將曲線轉(zhuǎn)化為極坐標(biāo)方程;

(2)求曲線上的點(diǎn)到直線的距離的最小值.

【答案】(1),(2)

【解析】

試題(1)先由對應(yīng)的參數(shù),解得,再代入,根據(jù)三角函數(shù)同角關(guān)系:消參數(shù)得普通方程,最后利用 將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;(2)根據(jù)直線的極坐標(biāo)方程化為直角坐標(biāo)方程,再利用參數(shù)方程表示點(diǎn)到直線距離公式得,最后利用三角函數(shù)有界性求最值.

試題解析:解:(1)當(dāng),所以

曲線的參數(shù)方程為為參數(shù),),

,帶入,即

化為普通方程為,為橢圓曲線化為極坐標(biāo)方程為

(2)直線的普通方程為,點(diǎn)到直線的方程距離為所以最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為了了解顧客的購物信息,隨機(jī)在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:

一次購物款(單位:元)

顧客人數(shù)

統(tǒng)計(jì)結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀(jì)念品.

(Ⅰ)試確定 的值,并估計(jì)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;

(Ⅱ)為了迎接春節(jié),商場進(jìn)行讓利活動(dòng),一次購物款元及以上的一次返利元;一次購物不超過元的按購物款的百分比返利,具體見下表:

一次購物款(單位:元)

返利百分比

請問該商場日均大約讓利多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)loga(x1)(a0,且a≠1)

(1)求函數(shù)f(x)的解析式;

(2)若-1f(1)1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=xR),gx=2a-1

1)求函數(shù)fx的單調(diào)區(qū)間與極值

2)若fx≥gx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中),記函數(shù)的導(dǎo)函數(shù)為

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)是否存在實(shí)數(shù),使得對任意正實(shí)數(shù)恒成立?若存在,求出滿足條件的實(shí)數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校選派甲、乙、丙、丁、戊5名學(xué)生代表學(xué)校參加市級“演講”和“詩詞”比賽下面是他們的一段對話甲說:“乙參加‘演講’比賽”;乙說:“丙參加‘詩詞’比賽”;丙說“丁參加‘演講’比賽”;丁說:“戊參加‘詩詞’比賽”戊說:“丁參加‘詩詞’比賽”

已知這5個(gè)人中有2人參加演講比賽,3人參加詩詞比賽,其中有2人說的不正確,且參加“演講”的2人中只有1人說的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學(xué)生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;

(Ⅱ)若曲線與曲線相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文中有回文句,如:上海自來水來自海上,倒過來讀完全一樣。數(shù)學(xué)中也有類似現(xiàn)象,如:88,454,7337,43534等,無論從左往右讀,還是從右往左讀,都是同一個(gè)數(shù),稱這樣的數(shù)為回文數(shù)”!

二位的回文數(shù)有11,22,33,44,55,66,77,88,99,共9個(gè);

三位的回文數(shù)有101,111,121,131,…,969,979,989,999,共90個(gè);

四位的回文數(shù)有1001,1111,1221,…,9669,9779,9889,9999,共90個(gè);

由此推測:11位的回文數(shù)總共有_________個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:)的離心率為 ,,,,的面積為1.

(1)求橢圓C的方程;

(2)斜率為2的直線與橢圓交于、兩點(diǎn),求直線的方程;

(3)在軸上是否存在一點(diǎn),使得過點(diǎn)的任一直線與橢圓若有兩個(gè)交點(diǎn)則都有為定值?若存在,求出點(diǎn)的坐標(biāo)及相應(yīng)的定值.

查看答案和解析>>

同步練習(xí)冊答案