【題目】已知橢圓C: ()的離心率為 ,,,,的面積為1.
(1)求橢圓C的方程;
(2)斜率為2的直線與橢圓交于、兩點,求直線的方程;
(3)在軸上是否存在一點,使得過點的任一直線與橢圓若有兩個交點、則都有為定值?若存在,求出點的坐標及相應的定值.
【答案】(1)(2)(3)見解析
【解析】
(1)利用離心率和三角形的面積列方程,由此解得的值,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓的方程,根據(jù),斜率乘積為建立方程,解方程求得直線的方程.(3)設出過點的直線方程,聯(lián)立直線方程和橢圓的方程,消去,化簡后寫出韋達定理,代入計算,根據(jù)為定值,求得點的坐標以及相應的定值.
(1)由已知,,又,解得,
∴橢圓的方程為。
(2)設直線的方程為,則由可得,
即
∵∴
∴直線的方程為即。
(3)設、、,當直線不為軸時的方程為,
聯(lián)立橢圓方程得:
∴當且僅當即時(定值)
即在軸上存在點使得為定值5
點E的坐標為或。經檢驗,
當直線為軸時上面求出的點也符合題意。
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),曲線的上點 對應的參數(shù),將曲線經過伸縮變換后得到曲線,直線的參數(shù)方程為
(1)說明曲線是哪種曲線,并將曲線轉化為極坐標方程;
(2)求曲線上的點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定圓,動圓過點且與圓相切,記圓心的軌跡為.
(1)求軌跡的方程;
(2)設點在上運動,與關于原點對稱,且,當的面積最小時, 求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)對任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且x>0時,恒有f(x)<1.
(1)試判斷f(x)在R上的單調性,并加以證明;
(2)若f(3)=4,解不等式f(a2+a-5)<2
(3)若關于的不等式在上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點,直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標原點),存在定點(不同于點),滿足:對于圓上任一點,都有為一常數(shù),試求所有滿足條件的點的坐標.
【答案】(1);(2)答案見解析.
【解析】試題分析:
(1)設所求直線方程為,利用圓心到直線的距離等于半徑可得關于b的方程,解方程可得,則所求直線方程為
(2)方法1:假設存在這樣的點,由題意可得,則,然后證明為常數(shù)為即可.
方法2:假設存在這樣的點,使得為常數(shù),則,據(jù)此得到關于的方程組,求解方程組可得存在點對于圓上任一點,都有為常數(shù).
試題解析:
(1)設所求直線方程為,即,
∵直線與圓相切,∴,得,
∴所求直線方程為
(2)方法1:假設存在這樣的點,
當為圓與軸左交點時,;
當為圓與軸右交點時,,
依題意,,解得,(舍去),或.
下面證明點對于圓上任一點,都有為一常數(shù).
設,則,
∴ ,
從而為常數(shù).
方法2:假設存在這樣的點,使得為常數(shù),則,
∴,將代入得,
,即
對恒成立,
∴,解得或(舍去),
所以存在點對于圓上任一點,都有為常數(shù).
點睛:求定值問題常見的方法有兩種:
(1)從特殊入手,求出定值,再證明這個值與變量無關.
(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.
【題型】解答題
【結束】
22
【題目】已知函數(shù)的導函數(shù)為,其中為常數(shù).
(1)當時,求的最大值,并推斷方程是否有實數(shù)解;
(2)若在區(qū)間上的最大值為-3,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(點均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)記,當時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com