某市對(duì)排污水進(jìn)行綜合治理,征收污水處理費(fèi),系統(tǒng)對(duì)各廠一個(gè)月內(nèi)排出的污水量m噸收取的污水處理費(fèi)y元,運(yùn)行程序如下所示:
請(qǐng)寫出y與m的函數(shù)關(guān)系,并求排放污水150噸的污水處理費(fèi)用.
考點(diǎn):分段函數(shù)的應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,這個(gè)程序反映的是一個(gè)分段函數(shù),利用解析式,由于m=150>100,即可求排放污水150噸的污水處理費(fèi)用.
解答: 解:由題意,這個(gè)程序反映的是一個(gè)分段函數(shù)
y=
13m    (m≤50)
50+15(m-50)  (50<m≤100)
150+25(m-100)   (m>100)

因?yàn)閙=150>100,
所以y=150+25(150-100)=1400,
故該廠應(yīng)繳納污水處理費(fèi)1400元.
點(diǎn)評(píng):本題考查程序框圖,考查分段函數(shù),考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知10x=2,10y=3,則103x-
4y
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
f(x)
x
在(m,+∞)上為增函數(shù)(m為常數(shù)),則稱f(x)為區(qū)間(m,+∞)上的“一階比增函數(shù)”,(m,+∞)為f(x)的一階比增區(qū)間.
(1)若f(x)=xlnx-2ax2是(0,+∞)上的“一階比增函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)若f(x)=λx3-xlnx-x2  (λ>0,λ為常數(shù)),且g(x)=
f(x)
x
有唯一的零點(diǎn),求f(x)的“一階比增區(qū)間”;
(3)若f(x)是(0,+∞)上的“一階比增函數(shù)”,求證:?x1,x2∈(0,+∞),f(x1)+f(x2)<f(x1+x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第三象限的角且f(α)=
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-3π).

(1)化簡(jiǎn)f(α);
(2)若cos(α-
3
2
π
)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=x2e1-x-a(x-1).
(Ⅰ)當(dāng)a=1時(shí),求f(x)在(
3
4
,2)內(nèi)的極大值;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)+a(x-1-e1-x),當(dāng)g(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2)時(shí),總有x2g(x1)≤λf′(x1),求實(shí)數(shù)λ的值.(其中f′(x)是f(x)的導(dǎo)函數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且2cosAcosC+1=2sinAsinC.
(Ⅰ)求B的大小;
(Ⅱ)若a+c=
3
3
2
b=
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(15°+α)=
3
5
,α為銳角,求:
tαn(435°-α)+sin(α-165°)
cos(195°+α)×sin(105°+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin2
π
4
+x)-
3
cos2x-1,x∈R
(1)求f(x)的最值和最小正周期;
(2)若h(x)=f(x+t)的圖象關(guān)于點(diǎn)(-
π
6
,0)對(duì)稱,且t∈(0,π),求t的值;
(3)設(shè)p:x∈[
π
4
,
π
2
],q:|f(x)-m|<3,若p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0的兩側(cè),且a>0且a≠1,b>0,則
b
a-1
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案