科目:高中數(shù)學 來源:2007年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(上海卷) 題型:044
已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0,F(xiàn)0,F(xiàn)1,F(xiàn)2是對應的焦點.
(1)若三角形F0F1F2是邊長為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求的取值范圍;
(3)一條直線與果圓交于兩點,兩點的連線段稱為果圓的弦.是否存在實數(shù)k,使得斜率為k的直線交果圓于兩點,得到的弦的中點的軌跡方程落在某個橢圓上?若存在,求出所有k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(07年上海卷理)(18分)
已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中。如圖,設點,,是相應橢圓的焦點,,和,是“果圓” 與,軸的交點,
(1)若三角形是邊長為1的等邊三角形,求“果圓”的方程;
(2)若,求的取值范圍;
(3)一條直線與果圓交于兩點,兩點的連線段稱為果圓的弦。是否存在實數(shù),使得斜率為的直線交果圓于兩點,得到的弦的中點的軌跡方程落在某個橢圓上?若存在,求出所有的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年上海市上海交大附中高二下學期期中考試數(shù)學 題型:解答題
已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中,是對應的焦點。A1,A2和B1,B2是“果圓”與x,y軸的交點,M是線段A1A2的中點.
(1) 若三角形是底邊F1F2長為6,腰長為5的等腰三角形,求“果圓”的方程;
(2)若“果圓”方程為:,過F0的直線l交“果圓”于y軸右邊的Q,N點,求△OQN的面積S△OQN的取值范圍
(3) 若是“果圓”上任意一點,求取得最小值時點的橫坐標.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年上海市高二下學期期中考試數(shù)學 題型:解答題
1. 已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中,是對應的焦點。A1,A2和B1,B2是“果圓”與x,y軸的交點,M是線段A1A2的中點.
(1) 若三角形是底邊F1F2長為6,腰長為5的等腰三角形,求“果圓”的方程;
(2)若“果圓”方程為:,過F0的直線l交“果圓”于y軸右邊的Q,N點,求△OQN的面積S△OQN的取值范圍
(3) 若是“果圓”上任意一點,求取得最小值時點的橫坐標.
查看答案和解析>>
科目:高中數(shù)學 來源:2007年普通高等學校招生全國統(tǒng)一考試理科數(shù)學卷(上海) 題型:解答題
已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中。如圖,設點,,是相應橢圓的焦點,,和,是“果圓” 與,軸的交點,
(1)若三角形是邊長為1的等邊三角形,求“果圓”的方程;
(2)若,求的取值范圍;
(3)一條直線與果圓交于兩點,兩點的連線段稱為果圓的弦。是否存在實數(shù),使得斜率為的直線交果圓于兩點,得到的弦的中點的軌跡方程落在某個橢圓上?若存在,求出所有的值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com