【題目】新高考方案的實(shí)施,學(xué)生對(duì)物理學(xué)科的選擇成了焦點(diǎn)話題. 某學(xué)校為了了解該校學(xué)生的物理成績(jī),從,兩個(gè)班分別隨機(jī)調(diào)查了40名學(xué)生,根據(jù)學(xué)生的某次物理成績(jī),得到班學(xué)生物理成績(jī)的頻率分布直方圖和班學(xué)生物理成績(jī)的頻數(shù)分布條形圖.
(Ⅰ)估計(jì)班學(xué)生物理成績(jī)的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點(diǎn)值為代表);
(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認(rèn)為物理成績(jī)與班級(jí)有關(guān)?
物理成績(jī)的學(xué)生數(shù) | 物理成績(jī)的學(xué)生數(shù) | 合計(jì) | |
班 | |||
班 | |||
合計(jì) |
附:列聯(lián)表隨機(jī)變量;
【答案】(I);(II)有.
【解析】
(Ⅰ)直接根據(jù)頻率分布直方圖,求得各個(gè)組的概率,利用公式求得眾數(shù)、中位數(shù)和平均數(shù);
(II)利用頻率分布直方圖填寫列聯(lián)表,然后求,即可判斷出是否有的把握認(rèn)為物理成績(jī)與班級(jí)有關(guān).
(Ⅰ)估計(jì)A班學(xué)生物理成績(jī)的總數(shù)為:
由左至右各個(gè)分區(qū)間的概率分別為0.1,0.2,0.3,0.2,0.15,0.05
中位數(shù)60+
平均數(shù):
(Ⅱ)
物理成績(jī)的學(xué)生數(shù) | 物理成績(jī)的學(xué)生數(shù) | 合計(jì) | |
班 | 24 | 16 | 40 |
班 | 10 | 30 | 40 |
合計(jì) | 34 | 46 | 80 |
所以有的把握認(rèn)為物理成績(jī)與班級(jí)有關(guān)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為圓上一點(diǎn),軸于點(diǎn),軸于點(diǎn),點(diǎn)滿足(為坐標(biāo)原點(diǎn)),點(diǎn)的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)斜率為的直線交曲線于不同的兩點(diǎn)、,是否存在定點(diǎn),使得直線、的斜率之和恒為0.若存在,則求出點(diǎn)的坐標(biāo);若不存在,則請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定公差大于0的有限正整數(shù)等差數(shù)列,其中,為質(zhì)數(shù).甲、乙兩人輪流從個(gè)石子中取石子,規(guī)定:每次每人可取個(gè)石子,取走的石子不再放回,甲先取,取到最后一個(gè)石子者為勝.試問(wèn):誰(shuí)有必勝策略?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的左右焦點(diǎn)分別為,左右頂點(diǎn)分別為,過(guò)右焦點(diǎn)且垂直于長(zhǎng)軸的直線交橢圓于兩點(diǎn),,的周長(zhǎng)為.過(guò)點(diǎn)作直線交橢圓于第一象限的點(diǎn),直線交橢圓于另一點(diǎn),直線與直線交于點(diǎn);
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若的面積為,求直線的方程;
(3)證明:點(diǎn)在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于直線和點(diǎn)、,記,若,則稱點(diǎn),被直線l分隔,若曲線C與直線l沒(méi)有公共點(diǎn),且曲線C上存在點(diǎn),被直線l分隔,則稱直線l為曲線C的一條分隔線.
(1)求證:點(diǎn)、被直線分隔;
(2)若直線是曲線的分隔線,求實(shí)數(shù)的取值范圍;
(3)動(dòng)點(diǎn)M到點(diǎn)的距離與到y軸的距離之積為1,設(shè)點(diǎn)M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)12位的正整數(shù)可以被37整除,且只包含數(shù)碼,求這個(gè)12為數(shù)的各位數(shù)字之和的所有可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),證明:對(duì)一切的,都有恒成立;
(Ⅲ)當(dāng)時(shí),函數(shù),有最小值,記的最小值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)且斜率為的直線與橢圓有兩個(gè)不同的交點(diǎn)和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種常見(jiàn)疾病可分為Ⅰ、Ⅱ兩種類型.為了解該疾病類型與地域、初次患該疾病的年齡(以下簡(jiǎn)稱初次患病年齡)的關(guān)系,在甲、乙兩個(gè)地區(qū)隨機(jī)抽取100名患者調(diào)查其疾病類型及初次患病年齡,得到如下數(shù)據(jù):
(1)從Ⅰ型疾病患者中隨機(jī)抽取1人,估計(jì)其初次患病年齡小于40歲的概率;
(2)記“初次患病年齡在的患者為“低齡患者”,初次患病年齡在的患者為“高齡患者”,根據(jù)表中數(shù)據(jù),解決以下問(wèn)題:
將以下兩個(gè)列聯(lián)表補(bǔ)充完整,并判斷“地域”“初次患病年齡”這兩個(gè)變量中哪個(gè)變量與該疾病的類型有關(guān)聯(lián)的可能性更大.(直接寫出結(jié)論,不必說(shuō)明理由)
(ii)記(i)中與該疾病的類型有關(guān)聯(lián)的可能性更大的變量為,問(wèn):是否有99.9%的把握認(rèn)為“該疾病的類型與有關(guān)?”
附:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com